Cover Image

A Concise Review on Cyclin Dependent Kinase 5 (CDK5) Inhibitors

Amit Kumar Gautam


Cyclin dependent kinases 5 (CDK5) carry out many critical roles in the process of cell cycling and play an important role in many physiological functions, including development of central nervous system and their inhibitors have been extensively researched as therapeutic agents in the diagnosis of cancer. CDK5 belongs to Serine/Threonine Cyclin-dependent kinase (cdk) family. CDK5/ p25 complex has emerged as one of the potent principle therapeutic target for various diseases like acute and chronic neurodegenerative disease, including Alzheimer’s disease. Excessive upregulation of CDK5 leads to several types of neurodegenerative disorders like Alzheimer’s disease (AD), Amyotrophic lateral sclerosis (ALS), Niemann pick type C disease and Ischemia. To inhibit the excessive activity of cdk5, several cdk5 inhibitors have been synthesized and discovered naturally by various research groups globally here in this review we are accounting some of them together to show their efficacy.


Cyclin dependent kinase; Cdk; Serine; Threonine; Alzheimer’s disease; ALS; Ischemia

Full Text:



D. Silva, M. Chioua, A. Samadi, P. Agostinho, P. Garcao, R. Lajarin-Cuesta, C. de los Rios, I. Iriepa, I. Moraleda, L. Gonzalez-Lafuente, E. Mendes, C. Perez, M.I. Rodriguez-Franco, J. Marco-Contelles, M.C. Carreiras. Synthesis, Pharmacological Assessment, and Molecular Modelling of Acetylcholinestrase/Butyrylcholinestrase Inhibitor: Effect against Amyloid- β-Induced Neurotoxicity. ACS Chem.Neurosci. 2013, 4, 547-565.

C.P. Ferri, M. Prince, C. Brayne, H. Brodaty, L. Fratiglioni, M. Ganguly, K. Hall, K. Hasegawa, H. Hendris, Y. Huang, A. Jorm, C. Mathers, P.R. Menezes, E. Rimmer, M. Scazufca. Lancet. 2005, 366, 2112-2117.

H.W. Querfurth, F.M.N. LaFerla. Engl.J.Med. 2010, 362, 329.

M. Citron. Nat Rev. Drug Disc. 2010, 9, 387.

A. Lleo, S. M. Greenberg, J. H. Growdon. Annu. Rev. Med. 2006, 57, 513.

L.E. Herbert, P.A. Scherr, J.L. Bienias, A.D. Bennett. Arch. Neurol. 2003, 60, 1119.

R. Dhavan, Li-Huei. Tsai. A Decade of CDK5. Mol.Cell.Biol. 2001, 2, 749.

M. Malumbres, M. Barbacid. Trends in Biochem.Sci. 2006, 30, 630.

J. Lew, K. Beaudette, C.M.E. Litwin, J.H. Wang. Purification and characterization of a novel proline-directed protein kinase from bovine brain. J.Biol.Chem. 1992, 267, 13383-13390.

M. Meyerson et al. A family of human cdc2-related protein kinase. EMBO. J. 1992, 11, 2909-2917.

A. Gupta, Li-Huei.Tsai. Cyclin dependent kinase 5 and neuronal migration in the neocortex. Neurosignals. 2003, 12, 173-179.

T. Ohshima, J.M. Ward, C.G. Huh, G. Longenecker, Veeranna et al. Targeted disruption of cyclin dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 11173-11178.

E.C. Gilmore, T. Ohshima, A.M. Goffinet, A.B. Kulkarni, K. Herrup. Cyclin-dependent kinase 5 defecient mice demonstrate novel development arrest in cerebral cortex. J. Neurosci. 1998, 18, 6370-6377.

J. Ko, S. Humbert, R.T. Bronson, S. Takahashi, A.B. Kulkarni et al. p35 and p39 are essential for cdk5 function during neurodevelopment. J. Neurosci. 2001, 21, 6758-6771.

C. Tarricone, R. Dhavan, J. Peeng. Mol. Cell. 2001, 8, 657.

M.D. Nguyen, J.P. Julien. Cyclin dependent kinase 5 in amyotrophic lateral sclerosis. Neurosignals. 2003, 12, 215-220.

L.F. Lau, M.K. Ahlijanian. Role of cdk5 in the pathogenesis of Alzheimer’s disease. Neurosignals. 2003, 12, 209-214.

P.D. Smith, S.J. Crocker, V. Jackson-Lewis, K.L. Jordan-Sciutto, S. Hayley et al. Cyclin dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson’s disease. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 13650-13655.

B. Bu, J. Li, P. Davies, I. Vincent. Deregulation of CDK5, hyperphosphorylation, and cytoskeletal pathology in the Niemann-pick type C murine model. J. Neurosci. 2002, 22, 6515-6525.

J. Wang, S. Liu, Y. Fu, J.H. Wang, Y. Lu. CDK5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nat. Neuroscience. 2003, 6, 1039-1047.

A. Scalbert, G. Williamson. J. Nutr. 2000, 130, 2073S-2085S.

I. Erlund, L.M. Silaste, G. Alfthan, M. Rantala, Y. Kesanieni, A. Aro. Eur. J. Clin. Nutr. 2000, 56, 891-898.

L. Meijer, E. Bisagni, M. Legraverend. W019961129.Patent. 96-FR1905, 9720842, 1997, 52.

L. Meijer, E. Raymond. Acc. Chem. Res. 2003, 2, 584.

W.F. De-Azevedo, S. Leclerc, L. Meijer, L. Havlicek, M. Strand et al. Inhibition of cyclin dependent kinase by purine analogues: Crystal structure of human cdk2 complexed with Roscovitine. Eur. J. Biochem. 1997, 243, 518-526.

M. Mapelli, L. Massimiliano, C. Crovace, M.A. Seeliger, Li-Huei.Tsai, L. Meijer, A. Musacchio. Mechanism of CDK5/p25 Binding by CDK Inhibitors. J. Med. Chem. 2005, 48, 671-679.

Y. Metty, M. Gompel, V. Thomas, M. Garnier, M. Leost et al. Aloisine, a new family of CDK/GSK-3inhibitors. SAR study, crystal structure in complex with CDK2, enzyme selectivity and cellular effects. J. Med. Chem. 2003, 46, 222-236.

R. Hoessel, S. Leclerc, A.J. Endicott, E.M. Nobel, A. Lawrie et al. Indirubin, the active constituent of Chinese leukemia medicine, inhibit cyclin dependent kinase. Nat. Cell. Biol. 1999, 1, 60-67.

J.K. Laha, X. Zhang, L. Qiao, M. Liu, S. Chatterjee, S. Robinson, K.S. Kosik, G.D. Cuny. Structure-activity relationship study of 2,4-diaminothiazoles as cdk5/p25 kinase inhibitors. Bioorg. Med. Chem. Lett. 2011, 21, 2098-2101.

J. Malmstrom, J. Viklund, C. Slivo, A. Costa, M. Maudet, C. Sandelin, G. Hiller, L.L. Olsson, A. Aagaard, S. Geschwinder, Y. Xue, M. Vasange. Synthesis and structure-activity relationship of 4-(1,3-benzothiazol-2-yl)-thiophene-2-sulphonamide as cyclin dependent kinase 5 (cdk5)/p25 inhibitors. Bioorg. Med. Chem. Lett. 2012, 22, 5919-5923.

R.Singh, Geetanjali, N. Sharma. Monoamine Oxidase Inhibitors for Neurological Disorders: A review. Chem. Biol. Lett., 2014, 1(1), 33-39.

I. Aprahamian, F. Stella, & O.V. Forlenza. New treatment strategies for Alzheimer’s disease: is there a hope? Indian J. Med. Res., 2013, 138, 449-460.

P. Padmaja. Total Synthesis of Bioactive Lactones: Prelactone E, epi-Prelactones V, E, Nonenolides (Z-isomers) and Stagonolide E. Int. Arch. Sci. Technol., 2013, 13(1), 1-6.

K. Gogoi. Synthesis and biophysical studies of PNA and chimeric PNA-DNA antisense oligomers with five atom linkages. Int. Arch. Sci. Technol., 2013, 13(1), 7-13.