

Journal of Integrated SCIENCE & TECHNOLOGY

Fascinating current density features of noble metal doped YBa₂Cu₃O_{7-δ} (YBCO) Superconducting materials

Dinesh Uthra,*1 R.K. Singh²

¹Department of Pure & Applied Physics, G.G.V. Central University, Bilaspur, Chhattisgarh 495009, India. ²School of Basic Sciences, ITM University, Gurgaon, (Haryana) 122017, India

Received on: 05-Apr-2019, Accepted and Published on: 24-May-2019

ABSTRACT

The aligned YBa2Cu3O7- δ (YBCO) superconducting materials were prepared by unique annealing method on a Gold foil. The structural and other properties of these superconducting materials have been studied i.e. X-ray diffraction, Scanning Electron Micrograph Magnetization and resistivity measurements. The study shows that the change in the Gold doping concentration in these superconducting materials from 0.1 to 3% affected the transition temperature range from 89K to 94K and the critical current density noticeably. The current density measured from the M-H curve is 2 × 104 Acm-2 by Bean Model. Densification and elongated alignment \approx 200 µm longs are observed in these materials.

Keywords: Superconductivity; Aligned grains; Magnetization; Au doping; Critical current density

http://pubs.iscience.in/jist

INTRODUCTION

Extensive research on the composite materials is goining on, spanning nearly three decades but there is still a lack of consistencies. Therefore it is important to further research to be conducted to resolve inconsistencies. The various attempt has been made to study the doped YBa₂Cu₃O_{7- δ} (YBCO) in bulk form high-temperature superconductor with the noble metals, viz Platinum (Pt), Gold (Au), Silver(Ag)¹⁻¹¹ and Cu of YBCO is replaced by these noble metals. these metals are the same in the periodic table of Cu. Many groups have made composite materials by using Gold (Au).^{2,4,5,7,11,12}

*Corresponding Author: Dr. Dinesh Uthra Department of Pure & Applied Physics, G.G.V. Central University, Bilaspur - Chhattisgarh 495009, India Tel: +91-09406354309 Email: dkuthra@rediffmail.com

Cite as: J. Int. Sci. Technol., 2019, 7(1), 10-13.

©IS Publications ISSN: 2321-4635

Gold does not exhibit this property, so that Y-Ba-Cu-0 / Au composites should not exhibit this effect. Silver acting as a channel for the diffusion of oxygen into Y-Ba-Cu-0 . could be responsible for nucleating the larger grains observed in cold-pressed Y-Ba-Cu-0 / Ag composites but Y-Ba-Cu-0/Au composites produce grains of much smaller size .

In the low doping of silver in the YBCO, silver plays as an oxygen stabilizer, the critical density enhances in the order of magnitude, the Tc remains unchanged. As the Ag content increases to above 20%, Tc starts to drop, some Ag atoms occupy the Cu-1 and Cu-2 site in this material. and give rise to a modification of weak link profile which causes an increase in current carrying capacity.^{1,5} Silver (Ag) plays an important role to promote the kinetic of oxygenation during the growth of YBCO thin film. The advantages of silver doping may be related to its ability in the enhancement of the critical current density and grain growth.¹³

Gold (Au) doped YBCO, the c axis lattice parameter expanded to without changing the oxygenation. The weakening of intergranular link as the concentration of Gold(Au) is above 3%...^{1,4,14} Platinum plays as a nucleation center during the melt

processing of platinum doped YBCO. The concentration of platinum in the range of 0.5-1 % wt enhanced the critical density 18×10^3 Acm⁻² at 77K.^{15–17}

EXPERIMENTAL DETAILS

The preparation of the samples YBa₂Cu₃O_{7- δ} (YBCO) was carried out by Yttrium Oxide (Y₂O₃), Barium Carbonate (BaCO₃), Copper Oxide (CuO) in the correct stoichiometric ratio and heated the mixture with using two intermediate grindings.

After pouring the mixture in, to clean die, and hydraulic pressure is used to press in to make pellet form (dia.10mm, thickness 2.5 mm) by using a pressure of 154.4MPa. The pellets were then placed on the Gold foil with a dimension of $2.5 \times 2.5 \times 0.1 \text{ mm}^3$ and annealed in the oxygen.

The pellets were heated at different temperature at different time duration i.e.the first pellets were heated at 650 °C at 2 °C per minute for 2hours, heated to 950 °C at 5 °C per minute for 2hours, then heated at 1020 °C at 5 °C per minute held at 1020 °C for 2hours, now cooled to 1010 °C at 10° C per minute, held at 1010° C for 30 minutes and cooled to 950 °C at 1 °C per minute, held at 950 °C for 2 hours, cooled to 450 °C at 1 °C per minute held at 1020 °C for 30 minutes and then furnace cooled to room temperature (Sample B). For a few samples, the final annealing temperature was increased to 1030 °C at 5 °C per minute held at 1030 °C for 1 hour, cooled to 1020 °C at 10 °C for 2 hours (sample C). Other procedure same for Sample B. For comparison, the parent's pellets (annealed the oxygen flow at 950 °C) Sample A was also studied.

RESULT & DISCUSSION

CuK α radiation was used in X-ray diffraction. All the samples were found to form single phase material and indexes exactly in the same manner as that of the parent orthorhombic YBCO compound. Except for the position 001 peak is shifted reflecting in the change in the lattice parameter. The 006 peak in the X-ray pattern shifted to lower 20 values due to the incorporation of Gold foil on the Samples B and Sample C while the 020 nearly and 200 peaks remain stationary as shown in Fig. 1.

Figure 1 X-ray diffraction pattern of Sample A, Sample B, Sample C of YBCO compound

The melting behaviour of YBCO pallets during the annealing on the platinum¹ and Gold foil is significantly different from that the alumina.¹⁸ The pellets on platinum and Gold foil always retained their shapes in spite of being heated close to melting temperature (1030 °C). Alumina decomposed and melted.

The elemental composition of all samples was determined by Electron Probe Micro Analysis (EPMA) revealing the atomic ration of 1:2:3 for Y, Ba, Cu in the samples. The Gold concentration of 0.5 to 1 % at sample B and 2 to 3% in sample C was present and mainly confined to the grain boundaries.

The Scanning Electron Micrograph of the samples shows that all are highly densified.¹⁹ The polycrystalline microstructure of sintered materials is absent. The density of the pellets was 93% of the theoretical density of YBCO. In the case of parent material sample A have 76% and sample B shows 85% of the theoretical density of YBCO.²⁰ As the temperature of 1020 °C the Gold fills the grain boundaries and attract the YBCO grains closer together and this is seen in the EDXS investigation. In the vicinity of the Gold near the interface long 200 μ m maligned grains of YBCO can be seen in Fig. 2. Due to this important nature of Gold, Gold crucible is is most suitable for growing the big crystal of YBCO.²¹

Figure 2. Aligned grain of YBCO observed in sample annealed on Gold foil at 1020 °C temperature for 2h.

Four point resistivity measurement was made in a closed cycle cryostat as shown in Figure 3.

The superconducting transition temperature Tc increases due to an increase of Gold concentration. The dense Sample C shows Tc \approx 94K higher than both the grain oriented Sample B Tc \approx 92K and parent Sample A Tc \approx 89K. The same evidence was found by DC susceptibility measurement.

Figure 3. Resistivity versus temperature of Sample A parent Sample, grain-oriented Sample B, highly densified Sample C.

The DC susceptibility as a function of temperature was measured using DC magnetometer.²² The sample was cooled in zero fields. The susceptibility of these materials are shown in Fig 4 where a sharp superconducting transition at 94.4K is evident for dense Sample C and Sample B and A show $Tc\approx 92K$, $Tc\approx 90$ K also.

Figure 4 Dc susceptibility of the densified sample annealed on Gold foil 1030 $^{\rm o}{\rm C}$ for 1h

The magnetization as a function of magnetic field intensity was measured using a SQUID magnetometer. A plot of magnetization as a function of the c-axis magnetic field is shown in Figure 5, The magnetization shows a sharp minimum load at 1.8KG followed by an approach to saturation.²³ The magnetization curve is similar to that obtained by other workers in single crystal

YBCO. The Jc of these samples was calculated by Bean model¹⁶ and it was found that the Jc increases from 4×10^3 to 2×10^4 Acm⁻² towards going for densification samples.

Figure 5. M versus H for the densified Sample annealed on Gold foil at 1030^0 C at 1h

CONCLUSION

Herein this report describe a new process for the preparation of the Gold dense YBCO, superconductor. The increase of c-axis parameter of the YBCO unit cell is correlated with systematic increases in the Tc value as measured in a transport experiment of the material.

Due to this process, the morphology of the sample is changed, annealed at 1020 °C for two hours and the crystallites are oriented. Gold has increased the melting point of the YBCO and filled the grain boundaries of the YBCO when it was annealed at 1030 °C for one hour. this causes an increase in the densification as well as the critical current density of the material.

ACKNOWLEDGEMENTS

Authors gratefully acknowledge Prof(Dr). P.L. Paulose, Prof. R. Nagrajan Professor Department of Condensed Matter Physics & Materials Science, Tata Institute of Fundamental Research, Mumbai for providing all necessary supports.

REFERENCES

- Y.H. Kao, Y.. Yao, L.Y. Jang, et al. Effect of silver doping in high Tc superconductor system YBaCuO. J.Appl Phys 1990, 67 (1), 353–361.
- C. Marta Z ., G. Xiao, C.L. Chien, et al. Incorporation of gold into YBa2Cu3O7: Structure and Tc enhancement. *J.Phys.Rev* 1900, B42 (10), 6200–6208.
- S. Dadras, M. Dayoudiniya, S. Dehaghan. Investigation and Comparing the effect of CNTs and Ag Nanoparticles Doping on YBCO Supercondutor Properties. J. Supercond. Nov. Magn. 2017, 30 (9), 2451– 2456.
- D. Veretnik, S. Reich. Non random gold YBa2Cu3O7-x composites. *Appl.Phys* 1993, 73 (12), 8429–8435.
- L.H. Allen, J. Edward, A. Fisher. Thin film Composite of Au and YBa2Cu3O7-δ. Appl.Phys.Lett 1995, 8 (8), 1003–1005.

- D.S. Misra, S.K. Singh, S.B. Palmer. Densification of YBa2Cu3O7-δ pellets annealed on platinum foil. *Solid State Commn* 1996, P96 (10), 775–778.
- F.H. Streiz, M.Z. Cieplak, X. Xiao, et al. Superconducting Au-YBa2Cu3O7 composites. *Appl .Phys.Lett* 1988, 52 (11), 927–929.
- B.R. Weinberger, L. Lynds, D.M. Potrepka, et al. Y-Ba-Cu-O /Silver composites An Experimental Study of Microstructure & Superconductivity le. *Phys. C* 1989, 161 (1), 91–104.
- M. Tepe, I. Avci, L.H. Kocoglua, D. Abukayb. Investigation of variation in weak link profile YBa2Cu3-xAgxO7-δ superconductors by Ag doping concentration. *Solid State Commun.* 2004, 131 (5), 319–323.
- F. Martínez-Julián, S. Ricart, A. Pomar, et al. Chemical Solution Approaches to YBa2Cu3O7- Au Nanocomposite Superconducting Thin Films. J. Nanosci. Nanotechnol. 2011, 11 (4), 3244–3255.
- R. Baghdaadi, S. Abhay, D. Golubev, T. Bauch, F. Lombardi. Josephson effect through YBa2Cu3O7-δ/ Au -encapsulated nanogaps. *Phys. Rev. B* 2017, 95 (17), 174510–1–6.
- J. Gullaini, J. Cadena, C. Monton. Templates assisted electrodeposition of Ni and Ni/Au nanowires on planar and curved substrates. *Nanotechnology* 2018, 29 (7), 75301–75326.
- S.B. Kondawar, A.M. More, H.J. Sharma, S.P. Dongre. Ag-SnO2/Polyaniline composite nanofibers for low operating temperature hydrogen gas sensor. *J. Mater. Nanosci.* 2017, 4 (1), 13–18.
- A. Patsha, S. Dhara, S. Chattopadhyay, K.-H. Chen, L.-C. Chen. Optoelectronic properties of single and array of 1-D III-nitride nanostructures: An approach to light-driven device and energy resourcing. *J. Mater. Nanosci.* 2018, 5 (1), 1–22.
- 15. N. Ogawa, I. Hirabayashi, S. Tanata. Preparation of high Jc YBCO bulk

superconductor by the Platinum doped melt growth method. *Phys. C* Supercond. **1991**, 177 (1–3), 101–105.

- C.P. Bean. Magnetization of High field Superconductors. *Rev. Mod. Phys.* 1964, 36 (1), 31–39.
- S. Senoussi. Review of Critical current densities and magnetic irreversibilities in High Tc Superconductor. J. Phys. III 1992, 2 (7), 1041– 1257.
- R. Bala, A. Agarwal, S. Sanghi, S. Khasa. Influence of SiO2 on the structural and dielectric properties of ZnO·Bi2O3·SiO2 glasses. J. Integr. Sci. Technol. 2015, 3 (1), 6–13.
- P.D. Virutkar, A.P. Mahajan, B.H. Meshram, S.B. Kondawar. Conductive polymer nanocomposite enzyme immobilized biosensor for pesticide detection. J. Mater. Nanosci. 2019, 6 (1), 7–12.
- H.S. Tewari, M. De. Investigation on synthesis, structural and electrical properties of Barium Stannate based complex Perovskites Ba1-xLaxSn1xCoxO3. J. Integr. Sci. Technol. 2017, 5 (2), 43–46.
- D. Huang, H. Gu, H. Zhang, et al. Bending properties of solder joint of YBCO coated conductors by etching copper stabilizer. *Phys. C Supercond. its Appl.* 2019, 562, 42–47.
- M. V. Bhute, Y.P. Mahant, S.B. Kondawar. Titanium dioxide / poly(vinylidene fluoride) hybrid polymer composite nanofibers as potential separator for lithium ion battery. *J. Mater. Nanosci.* 2017, 4 (1), 6–12.
- L. Lei, Z. Zhang, X. Wang, et al. Enhanced flux-pinning performance of YBCO films derived from a fluorine-free sol-gel process with ceria addition. *Ceram. Int.* 2019, 45 (2), 2657–2661.