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Spermatogenesis and steroidogenesis are the two important functions of the testis which are controlled by the hypothalamo-pituitary-
gonadal axis of the body. Presence of blood-testis barrier (BTB) in the seminiferous tubules as well as the immune components of the 
interstitial space also maintains remarkable immune privileged microenvironment in the testis. This helps the sperm autoantigens to escape 
from the immune attack. The testis also has its own innate immune defensive mechanism to combat against male reproductive tract 
infection. There are many local immune modulators which maintain the immune privilege and regulate the innate immune mechanism of 
the testis. Factors like Infection and inflammatory conditions, endocrine disruptors, heat stress, Reactive Oxygen Species, Reactive Nitrogen 
Species may have impact on the BTB integrity and may finally lead to immunologic infertility. An insight into biomolecules associated with 
spermatozoal immune mechanism may generate inputs to develop diagnostic tools and modulate fertility. 
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INTRODUCTION 
The testes in the male reproductive system synthesize two 

essential products - sperms - those maintain the health of the male 
reproductive system and testosterone - needed for the 
development and maintenance of normal testis function.1 This 
feature of the testis characterizes it as endocrine in nature. The 
synthesis of both the sperm and sex hormone is further regulated 
by endocrine hormones secreted by hypothalamus and pituitary, 
as well as locally within the testis. Optimal spermatogenesis 
requires the action of both testosterone (via androgen receptors) 
and FSH.2 

Mammalian spermatogenesis starts from undifferentiated 
spermatogonia, which then undergo reduction division and 
enormous transformations as well as changes in genetic makeup, 

gene expression profile, change in cell surface proteins3 finally 
forming spermatozoa. Functional spermatozoa are produced in 
the seminiferous tubules and finally mature within the 
epididymis.4 Only a small number of spermatogonia develop 
within the testes from fetal to pre‐pubertal period; however, 

once puberty is reached, active spermatogenesis begins,5 long 
after the establishment and maturation of the immune system 
including central immune tolerance to self-antigens. The 
exclusive sperm membrane proteins developed during maturation 
of the sperm are considered antigenic and immunogenic for the 
body and to avoid autoimmune attack on sperm, the testes adopt 
a unique immune environment for preservation of the 
reproductive capacity of men.6  

In particular, the testis is considered to be a remarkable 
immune privileged organ. The epididymis also maintains 
immune privileged microenvironment for protecting sperm from 
an immune attack during maturation and storage.7 In males, the 
blood-testis barrier (BTB) and biomolecules in the semen provide 
an immuno‐ tolerant microenvironment for spermatozoa.8 BTB 
is created by several types of junctions9 and the Sertoli cells 
significantly contribute to the formation of this barrier. BTB 
prevents the passage of circulating substances from entering the 
inner part of the seminiferous tubules and thus actively exclude 
immune cells and other factors from entering the seminiferous 
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tubules and being exposed to developing germ cells.2 In addition 
to their role in BTB formation, Sertoli cells secrete various 
immunosuppressive factors and thus play significant role in 
immunosuppression.10,11  

The defense mechanism of the testis has two aspects: one is to 
protect the autoantigens from detrimental immune responses and 
secondly to counteract infections by the attack of microbial 
pathogens. The immune privileged environment of the testis 
practice immune tolerance to both auto and alloantigens without 
evoking immune rejection. Various microorganisms infect the 
male reproductive system via ascending genital tracts and 
hematogenous dissemination, which may lead to inflammation 
and impaired male fertility.7 To combat against invading 
pathogens a local response by the testicular cells is observed 
where immune privilege is overcome by adopting effective 
antimicrobial innate immune responses.9 Various cytokines, 
including IL-1α and TNF- α are secreted by the male germ cells, 
suggesting the role of male germ cells in regulating the immune 
response12,13.  Male germ cells also express Fas ligand (FasL)14   
and FasL-induced apoptosis of Fas-bearing lymphocytes has 
important contribution in immune suppression.15 Besides, 
spermatogenesis, the other important function of the testis - 
steroidogenesis occur in the in the Leydig cells of the interstitial 
space. Although Sertoli cells and the germ cells play role in 
immune responsiveness and maintenance of the immune 
privilege status, the interstitial spaces also have the immune 
privilege microenvironment.16 Various immune components 
present in the interstitial cells like macrophages, dendritic cells, 
mast cells, lymphocytes etc. are known to contribute to 
maintenance of the immune privilege environment. In addition, 
androgens are produced by the Leydig cells and it exhibit 
antiviral ability in response to viral infection.17,18 Researchers 
have reported that the coordinated action of systemic immune 
tolerance, the local physical structure and active local 
immunosuppression maintains the immune privileged 
environment of the testis.16 

It is evident that there are many local immune modulators 
including macrophages, dendritic cells, natural killer cells, mast 
cells, and T‐ lymphocyte19,20,21 which help spermatozoa to escape 
immune attack. A dense network of dendritic cells22 and active 
transforming growth factor β (TGFB) present in the epididymis23 
provide immune tolerance for the auto antigenic spermatozoa. 
Immune components are also added by the accessory sex glands 
and efferent ducts during ejaculation.24 These secretory 
molecules regulate sperm function25 and subsequent fertilization 
events in the female reproductive tract.26,27 

Testicular innate immunity is particularly critical when 
systemic immunity is reduced. Pattern recognition receptors 
(PRRs) have been reported to initiate testicular innate immune 
responses16 and subsequently counteract the invading microbes.28 
Several subfamilies of PRRs (Toll like receptors-TLR, RIG I like 
receptor -RLR, NOD like receptors- NLR) have been identified.29 
These receptors play important roles in the defense against 
microbial infection and initiate inflammatory response in the 
male reproductive system.  

In humans, different T cell subsets (regulatory T cells, helper 
T cells, cytotoxic T cells, γδ T cells, and natural killer T cells) 
have been reported to be involved in the maintenance of immune 
tolerance and pathogenic immune responses in testicular 
infection and inflammation. T lymphocytes are the central 
regulatory molecules in controlling immune response and 
function either in a contact-dependent manner or by secreting 
soluble mediators. T lymphocytes maintain immune homeostasis 
and are involved in the pathogenesis of male infertility.30 
Biomolecules like cytokines maintain pathophysiological 
functions in the testis and seminal plasma in a coordinated way.31 
During infection, the concentration of pro-inflammatory 
cytokines increases. Under pathological condition the immune 
privilege environment is altered due to upregulation Fas system 
and integrin ligands of the Sertoli cells in response to cytokines.32 
Inflammatory cytokines like IL6, IL17, and IFNA along with NK 
cells and T‐ cells are observed in individuals with chronic male 
reproductive tract infection33 and this suggests that cytokines are 
essential during inflammation and infections for successful 
maintenance of fertility Under physiological and pathological 
conditions antimicrobial molecules like defensins, cathepsin, and 
serpine1 present in semen are known to regulate sperm motility 
and the innate immune response during infection. Defensins offer 
resistance to viral and bacterial infection and prevent premature 
hyperactivation of spermatozoa.34 Defensins are also essential for 
sperm maturation and protecting spermatozoa from immune 
attack in the female reproductive tract4. Presence of antisperm 
antibodies (ASA) are also known to be associated in case of 
infertility and generally cause impairment of various aspects of 
spermatogenesis including sperm function and sperm-egg 
binding.8 

In this review, discussion on the immune-endocrine features 
of the testis, function of various immuoregulatory molecules in 
maintaining immune homeostasis during normal and 
pathological conditions has been done. Though the other parts of 
the male reproductive system also have their own innate immune 
mechanism, but those parts are not discussed in this review. 

TESTICULAR ARCHITECTURE FROM THE ENDOCRINE 
POINT OF VIEW    

The two most important structural part of the testis are the 
seminiferous tubules and the interstitial space containing Leydig 
cells. The venue for spermatogenesis is the seminiferous tubules,4 
whereas steroidogenesis take place in the Leydig cells of the 
interstitial space. The seminiferous tubules comprise the 
seminiferous epithelium and somatic Sertoli cells. Various stages 
of developing male germ cells are also observed in the tubules. 
Peritubular myoid cells reside on a layer of basement membrane 
surrounding the seminiferous epithelium. Between the tubules is 
the interstitial space that contains the steroidogenic Leydig cells 
along with blood and lymphatic vessels, immune cells including 
macrophages and lymphocytes.2 

The spermatogenesis starts in the fetal testis and the ability of 
Leydig cells to produce testosterone under the influence of LH 
determines the success of spermatogenesis. Fetal Leydig cells 
appear during gestational weeks 7-8 in humans and the 
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production of testosterone starts under the stimulation of 
placental human chorionic gonadotropin (hCG). At puberty, 
under the influence of LH, mesenchymal cells divide and 
differentiate to form the adult population of Leydig cells.2 The 
release of male sex hormone is controlled by the hypothalamo-
pituitary-gonadal axis which facilitate the formation and 
maturation of the spermatozoa. This axis is composed of three 
endocrine organs hypothalamus, anterior pituitary, and the testes. 
The secretion of gonadotropin-releasing hormone (GnRH) by the 
hypothalamus initiates control of male reproductive function. 
The GnRH, in turn, stimulates the anterior pituitary gland to 
secrete luteinizing hormone (LH) and follicle-stimulating 
hormone (FSH). LH primarily stimulates the testicular secretion 
of testosterone, while FSH mainly stimulates spermatogenesis.1 
The testes, in turn, feedback on the hypothalamus and the 
pituitary via testosterone and inhibin secretion, in a negative 
feedback loop to limit GnRH and gonadotropin production. 
Sertoli cells (SC) and peritubular myoid cells secrete factors 
necessary for Leydig cell development and steroidogenesis.6  The 
development of the male germ cells is dependent on the structural 
and nutritional support of the Sertoli cells residing on basement 
membrane at the peripheral part of the seminiferous tubules. As 
germ cells lack both androgen and FSH receptors, these 
hormones act directly on the Sertoli cell surface receptor for 
controlling spermatogenesis. Sertoli cells also form intercellular 
tight, occluding and adhesion junctions at their base which 
prevent the diffusion of substances from the interstitium into the 
tubules. Thus a ‘blood-testis-barrier’ is formed which restricts 
the diffusion of substances from the interstitium and blood 
vessels, and thus allows the Sertoli cell to determine the immune 
privilege microenvironment above the junctions. This barrier 
effectively divides the seminiferous epithelium into two 
compartments, the basal compartment where substances from 
outside the tubule can freely access, and the adluminal 
compartment, where meiosis and the differentiation of 
spermatids take place.1 The formation of BTB creates an 
immune privileged environment in the seminiferous tubule of 
the testis. 

TESTIS AS AN IMMUNE PRIVILEGED ORGAN 
Immune privilege implies a special immunological status 

found in several mammalian tissues, where allografts and 
xenografts have long survival rates.35 The testis represents a 
distinct immune privileged site16 and this micro-environment in 
the testis prevent adverse immune responses against male germ 
cells36. An individual acquires the ability to tolerate self-antigen 
during the development of the immune system.16 Immune self-
tolerance is established during fetal and neonatal stage whereas a 
majority of male germ cells, particularly the late stages of germ 
cells are generated during puberty long after the establishment of 
immune self-tolerance. Male germ cells produced thus are 
recognized as foreign molecules by the immune system. These 
autoantigens induce strong autoimmune responses, whereas the 
intricate structure of the BTB formed protects these auto-
antigenic germ cells from the systemic immune attack.8 The 
permeability of the BTB is 50–100 times tighter than peripheral 

endothelial cells37. This barrier is also required for the completion 
of germ cell meiosis and progression into spermiogenesis. 
Various factors like endocrine hormones [follicle‐ stimulating 
hormone (FSH), luteinizing hormone (LH), and androgens) as 
well as paracrine factors (TGF𝛽𝛽 superfamily and retinoid 
signals)38 are known to control the integrity of BTB.  

The sequestration of autoantigens from the immune system by 
the blood–testis barrier (BTB) is believed to be critical for 
testicular immune privilege. Other structures which are benefited 
from immune privilege are spermatogonia and pre-leptotene 
spermatocytes, that localize outside the BTB.16 These 
observations suggest that multiple mechanisms are involved in 
the maintenance of testicular immune privilege. 
Factors maintaining the immune privilege state of the testis: 

Regulation of the immune privileged state in the testis is 
coordinated by multiple mechanisms and factors which include 
the testicular structure, immune suppressive milieu and systemic 
immune tolerance.39,40 

Testicular structure: The testis consists of a variety of cells 
and has a unique physical structure. Both the seminiferous 
tubules and the interstitial space of the testis play important role 
in spermatogenesis and steroidogenesis respectively. The 
testicular architecture, the distribution of various cells in the 
tubules and formation of BTB is already discussed in the previous 
section of this review.  

In addition to their role in BTB formation, SCs have inherent 
immunosuppressive properties.  

Immune suppressive milieu: SCs suppress immune 
responses by secreting various immune suppressive factors.10,11 
During maturation of spermatozoa, the cytoplasmic 
compartments of the sperm form residual bodies which are shed 
before maturation. Most of the developing germ cells undergo 
apoptosis and the phagocytic removal of the apoptotic germ cells 
and residual bodies is of great importance in maintaining 
testicular homeostasis and normal spermatogenesis.41 Damaged 
germ cells induce inflammatory responses in the testis42 and thus 
removal of apoptotic germ cells and residual bodies in time is 
important in avoiding autoimmune response. Secretion of various 
cytokines, including IL-1α and TNF-α by the male germ cells 
suggests the probable role of the germ cells in regulating the 
immune response.13,14 Fas ligand (FasL)15 and programmed death 
ligand 1 (PD-L1)36 are abundantly expressed in male germ cells. 
An important mechanism for suppression of immune responses 
is FasL-induced apoptosis of Fas-bearing lymphocytes15.  
However, the contribution of the FasL expressed germ cells in 
maintaining testicular immune privilege remains to be elucidated. 
Programmed death receptor-1/programmed death ligand-1 (PD-
1/PD-L1) is another T-cell tolerance system. Inhibition of T cell 
activation take place through PD-143 and PD-L1 is constitutively 
expressed in the testis. It is suggested that the PD-1/PD-L1 
system is also involved in the maintenance of testicular immune 
privilege44 as they are known to be involved in the survival of 
islet allografts. 

Immune factors of interstitial space 
Besides the seminiferous tubules, the interstitial spaces also 

maintain immune privileged microenvironments.16 Leydig cells 
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represent major cell types in the interstitial space and besides, a 
great variety of immune cells including macrophages, dendritic 
cells, lymphocytes and mast cells are observed along with.   

Among the immune cells, macrophages are a major 
population of antigen presenting cells which regulate the 
development and function (steroidogenesis) of the Leydig cells45.  
In comparison to macrophages of other tissues, testicular 
macrophages exhibit relatively low inflammatory responses and 
high immunosuppressive properties16 and this can be correlated 
with the testicular immune privilege. Testicular interstitial M2 
macrophages maintain the testicular immune privilege state by 
increasing the expression of CD163 and IL10 and lowering the 
expression of TNFA.46 In contrast circulating macrophages 
significantly infiltrate the testis in orchitis and are detrimental to 
spermatogenesis.47,48 It has been reported that high macrophage 
numbers in the testis of patients with aspermatogenesis and 
infertility indicating a negative correlation between circulating 
macrophages and spermatogenesis.49 

Dendritic cells (DCs) represent a minor population of the 
interstitial cells in the normal testis and are the most powerful 
antigen-presenting cells. DCs are involved in testicular 
autoimmune response as they are reported to increase in 
Experimental autoimmune orchitis (EAO).50 They minimize the 
autoimmune response by tolerating T cells to auto-antigens under 
physiological conditions.16 DCs in the testes predominantly are 
immature in phenotype and inhibit the action of the effector T 
cells1. Sertoli cells secrete activin A and transforming growth 
factor β (TGF-β), which inhibit immune responses of dendritic 
cells (DC) and macrophages.1                                      

Lymphocytes are abundant in the interstitial spaces of testis 
and the most testicular lymphocytes are T cells, among which 
CD8+ cells are more predominant and CD4+ cells are rare. B 
cells are absent in the normal testis.16 The number of lymphocytes 
is known to increase in case of EAO and infertile patients with 
sperm autoimmunity.51,52 This suggests involvement of 
lymphocytes in testicular pathogenesis under inflammatory 
conditions. Different T cell subsets (regulatory T cells, helper T 
cells, cytotoxic T cells, γδ T cells, and natural killer T cells) are 
known to be involved in the maintenance of immune tolerance 
and pathogenic immune responses in testicular infection and 
inflammation. In vitro studies have revealed the fact that there 
might be some possible interactions of the T cells with Sertoli 
cells and Leydig cells.6 Among different subtypes, T regs are 
known to contribute to testicular immune privilege. They are 
powerful immunosuppressive cells that promote peripheral 
immune tolerance and control the autoimmune response to sperm 
antigens in vasectomy models.53 The role of natural killer cells in 
testis is still not reported. 

Mast cells are among the most significant immune cell 
populations in the testis. Their role in maintaining immune 
privilege is not very clear but they are known to have regulatory 
mechanism during inflammatory condition of the testis.16 In 
addition to the inflammatory regulation, mast cells are essential 
intermediaries for regulatory T-cell tolerance.54 

 

Leydig cells are the major tissue-specific cell types present in 
the interstitial space that produce androgen, mainly the 
testosterone. This male sex hormone is essential for germ cell 
development. There are evidences that testosterone have 
inhibitory effects on the autoimmune response in both males and 
females but their mode of action may be different in both the 
sexes. Testosterone also contributes to the maintenance of 
immune privileged environment of the testis55,56 by acting on the 
Sertoli cells as SCs are the only cells having androgen receptors55 
and thus do not directly act on immune cells. Leydig cells also 
regulate immune responses by affecting testicular macrophage 
and lymphocyte numbers.16 

Peritubular myoid cells are able to communicate with the 
interstitial cells as they are located outside the BTB.  These cells 
help in transport of the spermatozoa from the testis to the 
epididymis57 by utilizing their contractile ability. Peritubular 
myoid cells also regulate the testicular immune environment by 
secreting numerous pro-inflammatory and anti-inflammatory 
cytokines, under physiological and inflammatory conditions.40,58 
Table 1 summarize various immune suppressive molecules found 
in the testis. 
 
Table I: Various immune suppressive molecules of testis. 

 
Coordinated action of endocrine and paracrine factors  

It is evident that testicular immune privilege is maintained by 
the coordinated action of both endocrine and paracrine factors. 
Leydig cells suppress both systemic and testicular immune 
responses to autoantigens by the secretion of androgens. 
Numerous paracrine cytokines, including various anti-
inflammatory factors, are also known to contribute to the 
maintenance of testicular immune privilege. 

Part of the 
testis 

Cell type Molecules 
secreted  

Reference 

 

 

Seminiferous 
tubule 

Male germ 
cells 

IL1α, TNF α, 
Fas L, PD-L-1 

12,13,14,36 

Sertoli cells Fas L, Activin, 
IGF-1, epidermal 
growth factor, 
TGFβ 

14, 36, 59 

Peritubular 
myoid cells 

IGF I, TGF-β, 
IL- 10 

59 

 

 

Interstitial 
space 

Leydig cells IL-10, Fas L, 
Activin, IGF-1, 
epidermal 
growth factor, 
TGFβ, 
Endorphin α and 
β, GAS 6 

36, 59 

Testicular 
macrophages 

Lyso-glyceryl 
phosphocholine, 
IL- 10, IL- 13, 
IL- 35 

59 

 T 
lymphocytes 
(T reg) 

IL- 10, TGF- β, 
TNF- α 

59,60,61 
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Luteinizing hormone (LH) regulates the synthesis of 
androgens by the Leydig cells. And these androgens in turn 
regulate immune response by acting on the Sertoli cells. LH 
antagonists reduce the levels of T regs and increase the levels of 
NK cells in men62. In addition to the endocrine function, Growth 
arrest-specific factor 6 (Gas6) are produced by the Leydig cells 
which inhibits innate immune responses through the activation its 
receptors Tyro3, Axl, and Mer (TAM) receptor tyrosine kinases 
not only in immune cells63, but also in Leydig and Sertoli cells.7  

TESTICULAR INNATE IMMUNITY 
Immune system is one of the crucial body systems that guard 

the body against infections64. Innate immune response of the 
body acts as the first line of defense against microbial infections. 
Although the testis is a remarkable immune privileged organ, it 
can be exposed to pathogens derived from blood or through 
genitourinary tract36. The testis adapts its own innate immune 
defense mechanism against invading microbial infections7 and to 
attain this testis overpower this immune privileged environment 
by inducing a local innate immune response65. 

Innate immune response is initiated in the testis with the 
expression of various pattern recognition receptors (PRR) and 
produce a large number of immunoregulatory factors, including 
pro-inflammatory cytokines, chemokines, and interferons 
(IFNs). These factors either activate immune cells to counteract 
microbial infections or directly restrict microbial replication in 
the infected cells. A high level of the immunoregulatory factors 
for a prolonged period are harmful to the tissues and thus PRR-
initiated innate immune responses must be negatively 
regulated.36 

PRRs are a superfamily of receptors and are activated by 
conserved molecular structures of microbial pathogens, termed 
pathogen-associated molecule patterns (PAMPs). The adaptive 
immune response induced by PRR activation helps in 
counteracting microbial infection. Endogenous autoantigens 
termed damage-associated molecular patterns (DAMPs) are 
released from damaged tissues and necrotic cells and stimulate   
inflammation66. There are several subfamilies of PRR67. These 
are toll like receptors (TLR), Retinoic acid-inducible gene I 
(RIG-I)-like receptors (RLRs) and NOD-like receptor (NLR). 
The best studied PRRs are TLRs68 and 13 TLR members are 
identified in the mammals. Two functional members, namely, 
melanoma differentiation-associated protein 5 (MDA5) and RIG-
I are present in RLRs and NLRs are known to contain a large 
number of cytoplasmic PRRs that recognize a broad spectrum of 
PAMPs and DAMPs16. 

Toll like receptors (TLRs): These are the first PRRs to be 
identified are the TLRs33/36 which initiate the innate immune 
response in SCs by inducing immune -regulatory cytokines, 
including TNF-a, IL-1, IL-6, MCP-1 and type 1 IFNs16. TLRs are 
located on the innate immune cell surfaces which identify and 
activate various pathogenic determinants of bacterial cell wall 69. 
The TLRs after activation initiate immune responses by 
recruitment of potent innate immune cells to the site of infection 
and proinflammatory mediators including the cytokines and 

chemokines are released from the activated immune cells as well 
as from the infected cells.70 

TLRs exclusively initiate the myeloid differentiation protein 
88 (MyD88)-dependent pathways, with the exception of TLR3 
and TLR4. The Toll/IL-1R-domain-containing adaptor-inducing 
IFN-β (TRIF)-dependent pathway is initiated by TLR3, and 
TLR4 activation triggers both MyD88- and TRIF-dependent 
pathways71. Nuclear factor kappa β (NF-κβ) is activated by the 
MyD88 pathway and induces the expression of pro-inflammatory 
cytokines and chemokines. The TRIF-dependent pathway 
activates NF-κB and IFN regulatory factor 3 (IRF3), thus leading 
to the induction of type 1 IFNs (IFN-α and IFN-β) and pro-
inflammatory cytokines. As a result, leukocytes are activated and 
recruited for the expression of IFN-inducible antiviral proteins, 
thereby counteracting invading microbial pathogens. Antigen 
presenting cells (APC) are also matured by TLR signaling 
facilities and thus adaptive immune response is observed33/36. 
TLR-initiated innate immune responses in Sertoli and Leydig 
cells are negatively regulated by Gas6/ProS-TAM signaling72,73. 
Different stages of germ cells also express TLRs74. Scientific 
reports reveal the expression of TLR3 in spermatogonia and 
spermatocytes and TLR11 in spermatids75,76. The immune cells 
of the interstitial space remain separated by the BTB from the 
cellular components of the adluminal compartments of the 
seminiferous tubules and thus the role of SCs and germ cells in 
controlling infection is of great significance.       

(RIG-I)-like receptors (RLRs): RLRs initiate antiviral 
immune response by recognizing ds RNA of different viruses 
during their replication77. The two main components of RLRs- 
RIG-I and MDA5 are involved in the recognition of viral ds RNA 
and thereby initiate innate antiviral responses through IPS-1 
signaling pathway in Leydig cells. Leydig cells express both RIG 
I and MDA5 whereas MDA 5 is expressed in the spermatids78.  
IPS-1 signaling activates NF-κ𝛽𝛽 and IRF3 in Leydig cells, 
thereby induce the secretion of the pro-inflammatory factors, 
TNF-α and IL-6 as well as IFN-α and IFN-β. Several antiviral 
proteins, including 2′5′-oligoadenylate synthetase (OAS1), 
MxGTPase1 (Mx1), and IFN-stimulating gene 15 (ISG15) are 
expressed due to stimulation of IFNs and these proteins degrade 
the viral RNA, inhibits transcription of the viral gene as well as 
amplification of antiviral signaling79. Testosterone synthesis is 
also suppressed in Leydig cells due to RIG-I- and MDA5- 
initiated IPS-1 signaling and this may result in the derangement 
of testicular functions. RIG-I/MDA5- initiated innate immune 
responses are generally observed during infection of various 
RNA viruses, like mumps virus (MuV), human 
immunodeficiency virus-1, and Zika viruses which are 
responsible for dysfunction of the testis.80 

NOD like receptors: NLRs are characterized by a common 
NOD motif81. There are more than twenty NLR members 
identified in humans, and these NLRs recognize a broad spectrum 
of PAMPs and DAMPs. The mode of action of different NLRs 
vary in the defense against pathogens. NOD1 and NOD2, induce 
inflammatory cytokine expression81 whereas other NLRs are 
involved in the processing and activation of inflammatory 
cytokines, including IL-1b and IL-18 which are activators of 
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inflammasomes82. But the function of the inflammasomes is not 
very clear. The presence of NOD1 and NOD2 mRNAs were 
detected in some testicular cells, including SCs and germ cells74, 
but their functions in these cells have not been examined.  

Recently cytosolic DNA sensors with antiviral properties 
have been determined83. Mouse Leydig cells constitutively 
express the cytosolic DNA sensors p204 and STING84. Leydig 
cells on exposure with viral DNA triggers this p204/STING 
signaling pathway, ultimately leading to the expression of IFN-α 
and IFN-β, as well as antiviral proteins. Viral DNA induces 
relatively low levels of pro-inflammatory cytokines and the viral 
DNA sensor-initiated innate immune response in Leydig cells 
does not inhibit testosterone synthesis; thereby rarely impairs 
male fertility36. Thus, the DNA sensor/STING signaling may be 
an ideal pathway for preventing viral infection in the testis.  

Role of leukocytes in testicular immunity 
Leukocytes are an important factor in immune system and 

have essential role in immune surveillance and phagocytosis of 
pathogens including defective spermatozoa. In approximately 
20-30% of infertile men, the number of seminal leukocytes is 
increased as a result of genital tract infection, inflammatory 
responses, cellular defence mechanism.85,86 Among diverse types 
of leukocytes granulocytes originate predominantly from the 
prostate and seminal vesicles, other types of white blood cells 
derive predominantly from the epididymis and rete testis87,88. 
Poly morpho nuclear (PMN) granulocytes and macrophages kill 
foreign material and cells by secreting hydrogen peroxide and 
superoxide, and pathogens are destroyed through phagocytosis. 
PMNs further initiate phagocytosis in infections/inflammations 
and are strong producers of ROS along with macrophages. 
Leukocytes also secrete both pro and anti-inflammatory 
cytokines which are further divided into chemokines, interferons, 
lymphokines, tumor necrosis factors and interleukin - molecules 
that mediate contact between leukocytes and other immune-
reactive cells, like macrophages, etc.89 

 Macrophages are located at the tissue entry site and release 
proteases, chemotactic neutrophils and endothelial cells 
responsible for ROS signaling at the inner side of the blood 
vessels following activation. In addition, each type of leukocyte 
produces large amounts of ROS to combat infections from 
invading pathogens by stimulating G6PDH activity, producing 
high NADPH levels. NADPH oxidase further eliminates 
NADPH electron to convert oxygen to superoxide anion.90  

In the immunological and inflammatory mechanism, cytokines 
play an important role in host response. Interleukins (IL) work by 
modulating leukocytes to create an inflammatory response, and 
by decreasing inflammatory cells90. ROS produced due to 
infection activates CXCL, CXCL8, IL-6 and IL-8 cytokines90,91. 
IL-8 produced by macrophage has a negative effect on the 
fertilizing ability of spermatozoa90,92. If the tissue gets damaged 
due to infection it stimulates IL-1 development in the 
surrounding environment90,93. PMN neutrophils and 
macrophages in turn secrete IL-6, which interacts with B-
lymphocytes that become antibody-producing cells, which can 
further interfere with sperm function90,94. T-cells generate IL-2 in 
response to mitogen alloantigen antigen and proliferation of T 

cells initiate the inflammatory response. In addition, numerous 
studies have shown a correlation between decreased sperm 
function and elevated levels of IL-6, IL-8 and tumor necrosis 
factor in seminal plasma, both leading to lipid peroxidation in the 
sperm cells.90, 95-97 

DISRUPTION OF TESTICULAR IMMUNE PRIVILEGE AND 
MALE INFERTILITY 

The immune privilege condition of the testes is necessary for 
normal spermatogenesis by preventing immune attacks to gamete 
specific antigens and paternal major histocompatibility complex 
(MHC) antigens, However, various factors like infection and 
inflammations may break the immune tolerance and represent a 
significant cause of male infertility.6 If due to some reason the 
testicular immune privilege is disturbed, immune responses 
against the TGC autoantigens should be induced. The 
characteristics of testicular autoimmunity include the detection of 
inflammatory cell infiltration into the testis, disturbed 
spermatogenesis, testicular antigens‐specific T‐ cell response, 

the specific serum autoantibodies, and binding of the 
autoantibodies and complements in the testis.5  

Alteration in BTB integrity 
The intricate structure of the BTB protects the developing 

germ cells against the new sperm membrane specific antigens 
that appear during puberty. Due to the presence of this barrier, 
the germ cells may conveniently complete their meiotic cycle and 
advance towards spermiogenesis. Various endocrine and 
paracrine factors like follicle‐ stimulating hormone (FSH), 
luteinizing hormone (LH), androgens, TGFB superfamily and 
retinoid signaling secretions38 are known to regulate BTB 
integrity. The integrity of the BTB can also be affected by a great 
variety of factors including clinical conditions, endocrine 
disruptors, inflammation etc. and thus various immune regulatory 
molecules exhibit immune response. For instance, testicular 
dysgenesis syndrome (TDS) inclusive of cryptorchidism, 
hypospadias, and testicular germ cell cancer affects the BTB 
integrity98. These syndromes may develop due to abnormal fetal 
development of Sertoli and Leydig cells likely due to the genetic 
interaction of multiple factors including endocrine‐ disrupting 
chemicals, lifestyles and obesity8. Peptidyl‐ prolyl cis/trans 
isomerase (Pin1), Fas ligand (FASLG) system, and toll‐ like 
receptors (TLRs) are the examples of various interactors that 
affect BTB integrity. Pin 199 by its reduced expression affects 
cadherin‐ catenin multifunctional complex37 that are essential for 
maintaining the integrity of the BTB. Scientific reports have 
revealed the role of TLR10 in the development of 
spermatogenesis100 but the immune regulatory functions of TLR 
in testis and spermatozoa needs more exploration.39,101 

Biomolecules and male reproductive function 
Seminal plasma contains many immune regulatory 

biomolecules that reacts during inflammation, but their 
physiological role is not very clear. An insight into biomolecules 
associated with spermatozoal immune tolerance may generate 
inputs to the factors regulating fertility. 
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i. Cytokines: Cytokines are cellular messengers that play key 
roles in many biological conditions such as immune defense and 
reproduction.86,102 The tissue macrophages along with leukocytes 
are major source of proinflammatory cytokines103. Inflammatory 
cytokines are key immune-regulators in male genital tract 
infections and modulation of the HPG axis regulation over 
testicular functions may result in infertility. Proinflammatory 
cytokines, TNF- α, interleukin (IL)-1α and IL- 1β present in 
testes, epididymis and spermatozoa, have immunoregulatory 
roles in the male reproductive tract4. A large amount of the 
immunoregulatory cytokine like IL-6, driven by IL-1, produced 
by Sertoli cell and germ cells are involved in the development of 
these cell104. Testicular germ cells also produce TNF which has a 
dual role as a signaling molecule, to regulate Sertoli cell function, 
in response to toxic insults, as well as its receptor-mediated 
functions105.  Testicular development is also regulated by a 
number of the transforming growth factor β (TGFβ) superfamily 
members which is critical for sperm development106. Colony-
stimulating factor-1 (CSF1) and macrophage migration 
inhibitory factor(MIF) are known to be involved in macrophage 
and Leydig cell development within the testis. During viral 
infections, Interferons (IFN-α, β, and γ) are produced by 
numerous testicular cells103. 

Cytokines have significant role in the maintenance of testicular 
as well as seminal physiology.  TGFB, C‐ XC motif chemokine 
ligand 12 (CXCL12), monocyte chemotactic protein 1 and IL1, 
IL5, IL7, IL13, and IL17 are highly expressed in fertile 
individuals107. These cytokines together regulate the T‐ cell 
activity, chemotactic cytokine ligand 3, interferon α (IFNA), and 
granulocyte colony‐ stimulating factor (CSF2). The majority of 
testicular cytokines include bone morphogenic protein (BMP2)8. 
CXCL12 and C‐ X‐ C chemokine receptor type 4 (CXCR4) 
have significant role in Sertoli cell and Leydig cell development 
and function. The production and differentiation of sperm cells 
involve BMP2A and TGFB ligand108; whereas other molecules 
like the CXCL12, CXCR4 chemokine ligand and receptor‐
signaling complex are necessary for migration and colonization 
of primordial germ cells109 as well as the maintenance of 
spermatogonial stem cells110. Scientists have reported that the 
testicular immune privilege environment is maintained by the 
increased expression of CD163 and IL10 and reduced expression 
of TNFA by the interstitial M2 macrophages46. During testicular 
infection, cytokines work in a coordinated manner in the testis as 
well as seminal plasma31 and an increase in PTGE might 
stimulate cell‐ mediated response to spermatozoa. The overall 
cytokine production is increased during testicular infection8. 
Semen samples with poor fertility status show increased IL6 and 
IL8 concentration in the seminal plasma and this may be 
indicative of prostate gland infection as well as 
leucocytospermia-indicator of infection or inflammation in the 
male reproductive tract. IL8 is a proinflammatory cytotoxic 
chemokine and it activates neutrophilic phagocytosis, which 
might have a key role in combating male genital tract infection111. 
An inverse correlation of IL8 with sperm motility and semen 
volume has been reported in ejaculatory duct and seminal vesicle 
dysfunction.112 In chronic testicular infection, inflammatory 

cytokines like IL6, IL17, and IFNA along with NK cells and T‐

cells have been observed33 and this indicates the role of these 
inflammatory cytokines in maintaining fertility. 

ii. Adipokines: These are hormones produced by the white 
adipose tissue65 and have a significant role in the lipid and 
glucose metabolism, in inflammation113,114 and in the regulation 
of the spermatogenesis115. Adipokines regulate male gonadal 
functions through the function of hypothalamo-pituitary gonadal 
axis.65 

Leptin, a widely studied adipokine was shown to regulate 
reproductive functions by synchronizing the hypothalamus-
pituitary-gonadal (HPG) axis at both the central and peripheral 
levels. Leptin facilitates GnRH secretion by acting through 
neuropeptides in the hypothalamic zona incerta. It releases nitric 
oxide (NO) which induce GnRH release from GnRH neurons by 
activating guanylate cyclase and cyclooxygenase116-118. 
Furthermore, leptin stimulates the release of LH and FSH via the 
NO synthase activation in the gonadotropic cells 116,119. Increased 
concentrations of leptin inhibit hCG in a dose dependent manner 
and thus affect testosterone production by Leydig cells.65 

Adiponectin is a protein secreted by the adipose tissue which 
through a variety of signaling pathways, downregulates the 
expression of TNF-α, IL-6 and IL-18 genes, thus protecting the 
system from the harmful effect of proinflammatory cytokines by 
suppressing NFkB action120. Adipokines are thought to be a link 
between metabolic syndrome (MS) and infertility94. Men with 
MS exhibit lower adiponectinemia. BMI, infertility time, and 
adiponectin serum/SP ratio are independently associated with 
MS121.  

Resistin is a protein secreted by the adipose tissue and is 
expressed in interstitial LC and SC of testis. They are expressed 
under control of the gonadotropins and is expressed at its peak at 
stages II - IV of the seminiferous epithelial cycle119,122. 
Furthermore, resistin shows a correlation with IL-6, TN-α, 
elastase and seminal quality. The seminal concentrations of 
resistin are found to be significantly higher in cases of 
leucocytospermia123 and this suggest that resistin could be 
considered as a marker of inflammation.  

Chemerin, also known as tazarotene-induced gene 2 (TIG2) or 
retinoic acid receptor responder 2 (RARRES2), is synthesized as 
an inactive precursor, prochemerin, which upon proteolytic 
cleavage is converted to its active form during inflammation124. 
Chemerin and its receptors CMKLR1 and GPR1 are located in 
human and rat testes 125 but to a lesser extent in the spermatogonia 
and spermatocytes and is a novel regulator of gonadal 
steroidogenesis.123 

Visfatin, secreted by visceral adipose tissue is present in 
various tissues, including the testis, Leydig cells, spermatocytes, 
and spermatozoa126. Increased Visfatin concentrations is 
connected with increased concentration of serum testosterone, 
increased body and testis weight, and is negatively correlated 
with blood glucose concentration. Seminal plasma blood level 
ratio of visfatin indicates local production in the male genital 
tract, however its role in spermatogenesis is not yet reported in 
humans.123 
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Vaspin is one of the most recently discovered adipokine which 
acts as an insulin sensitizer with anti-inflammatory effects102.  
Vaspin is expressed in epididymal, retroperitoneal, and 
mesenteric adipose tissue and is related to the metabolic state115.  

Progranulin is an adipokine known to increase in cases of 
obesity or metabolic syndrome and could contribute to the 
inflammatory mechanisms. 

Ghrelin is an endocrine, paracrine and autocrine regulator in 
human testis is also a multifunctional peptide hormone that 
affects several biological functions including production of 
proinflammatory cytokines, and reproduction in many species127. 
Ghrelin is also present in the human testis and particularly in 
Leydig and Sertoli cells but not in germ cells128 and has an 
indirect effect on spermatogenesis.129 

iii. Defensins: Defensins are biomolecules those offer 
resistance to viral and bacterial infection and prevent premature 
hyper activation of spermatozoa34. α and β defensins, human 
neutrophil peptide1–3, human defensin 5, 6, and human β 
defensin‐ 1 (HBD1) are observed in human spermatozoa and 
testes. There is evidence that human spermatozoa on incubation 
with defensin improve sperm motility as well as pregnancy 
rate130. During capacitation, binding of spermatozoa to the 
epithelia of oviduct through glycosylation is conducted by 
DEFB12634. DEFB126 also protects the sperm during its transit 
through female reproductive tract.131 

iv. Antisperm antibodies: There are reports that naturally 
occurring antisperm antibodies (ASA) exist in many species, 
including humans132.  Circulating ASAs and their role in affecting 
fertility was reported since long4 and various reasons have been 
identified for formation of ASA in males. These include damage 
of BTB due to local inflammation133, tumors8, toxicants134,135, 
testicular sperm extraction procedures136, decrease in both 
cellular and humoral immunomodulatory factors in seminal 
plasma137 and antigenic cross‐ reaction between microorganisms 
and spermatozoa138. Other reasons may include mechanical 
obstructions in the excurrent duct system due to inflammatory 
and infectious agents139, varicocele140,141, injury to the genital 
organs142, occlusion of vas deferens143, and epididymal 
inflammation144. In case of sexually transmitted disease, ASA 
may bind to the spermatozoa and induce immune response145. 

ASAs secreted in seminal plasma react with spermatozoal 
antigens and agglutinate spermatozoa.8 ASA production 
associated with infertility indicates impairment of various aspects 
of spermatogenesis, including sperm function and sperm‐ egg 
binding8.  Various sperm parameters like motility, sperm 
functional membrane integrity, acrosomal integrity, and the 
ability to penetrate the cervical mucus are known to be affected 
due to secretion of ASAs.79,101,107,146 ASAs have been also 
associated with acrosomal disorders, DNA instability and can 
impair fertility in normozoospermic individuals147. ASA positive 
human sperm has revealed 27 novel proteins including T‐

complex protein 1 subunit θ, arylsulfatase A, and arrestin 
domain‐ containing protein‐ 5. These proteins are known to be 
involved in spermatozoon–oocyte interaction148, presence of 
ASAs against these proteins may result in failure of sperm‐ zona 
binding and infertility. 

IMMUNE ENDOCRINE FACTORS AND MALE INFERTILITY 
The hypothalamic- pituitary gonadal (HPG) axis contributes to 

maintaining normal reproductive function. The local 
immunological environment in the reproductive tract is 
maintained by gonadal steroids and LH and this condition 
promotes immune tolerance. Androgens downregulate pro-
inflammatory cytokines in males. Testosterone is involved in T‐

cell apoptosis in testes149, which is important for the maintenance 
of testicular immune privilege. Androgens exert their 
immunosuppressive function on testicular leukocytes by 
regulating the balance between pro‐ and anti‐ inflammatory 
cytokine expression in the Sertoli, Leydig, and peritubular myoid 
cells20. CD106 is also found to be expressed in Leydig cells and 
the basal parts of the SCs in human testes150. inflammation in the 
testes can destroy the Leydig cell group, and the elimination of 
CD8+ or CD8- T cells diminish the testicular inflammation, thus 
protecting the germ cells151. Recently, a case was found with a 
significantly decreased number of Leydig cells in the testes, 
along with T lymphocyte infiltration, under infection with 
COVID-19, and the expression of the virus receptor angiotensin-
converting enzyme 2 (ACE2) was proved to be highest in the 
testes152,153. Thus, dysfunction of the immune endocrine factors 
may be related to male infertility. 

Endocrine disruptors and male infertility 
Endocrine disrupting chemicals (EDCs) are able to interrupt 

the closed feedback loops of the hormonal and homeostatic 
systems154. The group of known ED is extremely heterogeneous. 
These include ubiquitous synthetic substances used as industrial 
lubricants and solvents, and their by-products, plastics, 
plasticizers, pesticides, drugs, as well as non-steroidal anti-
inflammatory drugs. Natural chemicals such as genistein, a 
phytoestrogen155 and heavy metals156 can also have endocrine-
disruptive effects. Most EDs are known to act as imperfect 
ligands (either agonists or antagonists) for nuclear and membrane 
receptors (both steroidal and non-steroidal hormones) and 
interfere with hormone regulated cell signaling pathways and 
gene expression157. Most EDs are supposed to act through several 
mechanisms, which may have synergistic or antagonistic 
outcomes.158 Some EDs are also capable of modifying 
bioavailability of hormone by disrupting its secretion and 
transport or altering the enzymatic pathways involved in 
hormone synthesis and metabolism.159,160 Recently, many anti-
virilizing EDs (e.g., phthalates and BPA) have been found which 
reduce prostaglandin biosynthesis by acting as cyclooxygenase 
inhibitors.161 

Due to the presence of distinctive methylation patterns and 
epigenetic markers162 the male germ cells are considered as the 
most vulnerable cells.  It is evident that an association exists 
between inferior semen quality parameters and increased urinary 
and serum levels of phthalates,163 PCB,164 PBDE165,166 and 
BPA.167 The normal functioning of the germ cells and 
spermatogenesis supporting cells are hampered by EDCs. The 
blood–testis barrier is disrupted due to intrauterine exposure of 
BPA and this may lead to infertility through germ cell loss via 
immunological activity,168 higher incidences of testicular 
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dysgenesis syndrome (TDS),169 which include cryptorchidism, 
hypospadias and testicular cancer.170   

The main cellular trait of TDS is impaired Leydig cells 
function171,172. In mild cases, men have low testosterone levels, 
slightly decreased penile/testicular volumes and poor semen 
quality, while in the more severe cases there is also hypospadias 
or cryptorchidism and an increased risk of testicular cancer173. 
Epidemiological data suggest that human developmental 
exposure to environmental levels of EDC (e.g., phthalates, PCB 
and pesticides) is indeed connected to an increased risk of TDS 
features such as hypospadias and cryptorchidism.174-177 

Hypospadias is a condition in which the urethral meatus is on 
the ventral side of the penis, affects about 0.4% of males at birth 
and Cryptorchidism is defined as the failure of one or both 
testicles to descend into the scrotal sac and is the most common 
congenital abnormality in male children, affecting 2–4% of full-
term males.178 It may lead to infertility and even testicular cancer 
in adulthood.179 Developmental exposure to EDC may act on 
Leydig cells by i) reducing insulin-like factor 3 expression180 and 
ii) impairing steroidogenesis (resulting in relative testosterone 
deficiency) respectively.181 The fetal testicular androgen 
production helps in differentiation of the male reproductive 
system182 and thus, disruption of androgen activity by EDC 
during the virilization period (around 8–14 weeks into human 
fetal development) may cause TDS.183 

Another cause of male infertility may be occupational 
pesticide exposure. PCB,184 phthalates,185 cypermethrin,186 
dieldrin187 and EE188 are known to cause reduced steroidogenesis 
in Leydig cells and Phthalates189 are known to be involved in 
germ cell apoptosis. Arsenic also acts as an endocrine disruptor 
and alters the function of the hypothalamus‐ pituitary‐ testicular 
axis and subsequently reproductive hormones. Arsenic affects 
testicular architecture, leading to decreased testicular weight, 
reduced sperm concentration and function.89,90/134,135 

ROS, RNS and heat stress in male infertility  
Oxygen is crucial for living organisms, but some of its 

derivatives such as peroxyl (ꞏROO-) and hydroxyl (ꞏOH) 
radicals, superoxide (ꞏO2-) anion, and hydrogen peroxide (H2O2) 
could be harmful to the cells. These derivatives are Reactive 
Oxygen Species (ROS) which are known to have link with male 
infertility.190 Leukocytes and spermatozoa are two main sources 
of ROS in the male reproductive tract, and these cells produce 
ROS as part of regulatory roles during inflammation and cellular 
defense.56/65 ROS influence spermatozoal DNA damage, impair 
sperm motility, reduce sperm concentration and damage the 
sperm membrane, thus decreasing the sperms potential to fuse 
with the oocyte.191 Excessive production of reactive oxygen 
species (ROS), by the leukocytes may induce oxidative stress 
(OS) and oxidative damage to the spermatozoa89. During 
continuous adenosine triphosphate (ATP) production by the 
mitochondria in the spermatozoa, ROS may be released as by-
products from oxygen (O2) consumed due to redox reactions 
occurred.192,193 Dysfunctional mitochondria are thus the major 
source of excessive ROS production, which create an 
unfavorable imbalance in the redox status. 

ROS is also known to produce immature spermatozoa and 
leukocytes (mainly neutrophils and macrophages) in the male 
genital tract. In approximately 20-30% of infertile men having 
genital tract infection, the number of seminal leukocytes is 
elevated resulting in a significantly higher ROS production 194,195. 
Bacterial infection triggers defensive mechanism by the host 
tissue (testis, epididymis, prostate gland and seminal vesicles) via 
unique or non-specific immunity at their entry sites.196 During 
male genital tract infection, PMN granulocytes and macrophages 
produce excessive ROS and secrete cytokines.190 Numerous 
studies have shown a correlation between decreased sperm 
function and elevated levels of IL-6, IL-8 and tumor necrosis 
factor in seminal plasma, both leading to lipid peroxidation in the 
sperm cells97. Leukocytes release large amounts of superoxide 
into phagocytic vesicles during the killing action of pathogens 
and these ROS in turn cause substantial damage to the healthy 
tissues including male reproductive system as well as the sperms. 
ROS destroy the sperm membrane, impair sperm movement, and 
damage sperm DNA. Oxidative stress also causes change in the 
structure of the spermatozoal flagella during epididymal 
maturation, causing impaired motility following ejaculation.197 
According to Depuydt  and his colleagues,198 elevated ROS have 
been associated with male accessory gland infection, including 
the urethra, prostate, deferent ducts, seminal vesicles, 
epididymis, or testes. 

Additional ROS in the male reproductive tract is known to be 
produced from poor lifestyle, smoking, consumption of alcohol, 
pesticides, exogenous estrogens and heavy metal toxicity, 
nutritional deficiencies etc. 

Seminal plasma contains endogenous enzymatic scavengers 
such as Superoxide dismutase (SOD), catalase and glutathione 
peroxidase, as well as exogenous non-enzymatic antioxidants 
such as vitamins C and E, zinc, coenzyme Q10 and ubiquinol198. 
A fine balance between ROS and antioxidants needs to be 
maintained for normal reproductive function.191,197 

Nitrosative stress is caused by high levels of reactive nitrogen 
species (RNS) and peroxynitrite is known to be the most toxic 
RNS8. Peroxynitrite‐ induced nitrosative stress causes impaired 
sperm function; however, it does not cause cell death in human 
spermatozoa.199,200 An association between high levels of 
peroxynitrite and decreased sperm quality has been reported in 
infertile men. Peroxynitrite is also associated with decreased 
mitochondrial membrane potential, adenosine triphosphate 
(ATP), and motility. Decreased sperm viability and increased 
sperm DNA fragmentation may take place due to prolonged 
exposure to peroxynitrite.200 

Heat stress suppresses immunity and impacts reproduction 
mainly by elevating ROS production and subsequently affecting 
sperm mitochondrial ROS generation, sperm membrane fluidity, 
and DNA integrity201. This may also stimulate the expression of 
heat shock proteins (HSPs) including hypoxia upregulated 1, 
HSPC1, HSP86, HSPA5, HSPD1, HSP60, HSP70, and testis‐
specific chaperon HSPA2 on the sperm surface, impacting the 
fertilization potential of the individual. During genital tract 
infection the expression of HSPs are upregulated and finally 
leads to reproductive failure.202 The concentration of some of the 
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cytokines like CXCL5, CXCL16, CXCL8, IL1b, IL10, CSF3, 
chemokine‐ motif ligand 3, and TNFA are increased at high ROS 
levels.203 

Male reproductive tract infection in infertility 
The association of male reproductive tract infection and 

inflammation with male infertility is being a topic of research 
since long.56 Scientific reports reveal that 15% of male infertility 
is caused by male genital urinary tract infections,14 affecting 
different sites of male reproductive system, such as testis, 
epididymis, and male accessory glands.15 Both sexually and non-
sexually transmitted diseases may impair spermatogenesis at 
different levels of sperm production, maturation and transport by 
urogenital infections. Different mechanisms are proposed to 
explain how infection or inflammation in the reproductive system 
can reduce male fertility.18-20 One of the major causes involve 
induction of testicular oxidative stress (OS) due to 
overproduction of reactive oxygen species (ROS).21-23 The 
inflammatory reactions associated with oxidative stress in return 
is harmful to the sperm as it causes damage in the sperm DNA 
and finally cause apoptosis.  

Infection in the reproductive tract activates the innate immune 
system and release cytokines and other inflammatory 
mediators204 Cytokines produced in response to invasion of 
pathogens or severe injury play a major role in the inflammatory 
response and modulate the communication between the different 
cells of the immune system.194 During inflammation, the level of 
these cytokines and other inflammatory mediators become high 
and become harmful for sperm production leading to male 
infertility.204 

Variety of micro-organisms are responsible for male 
infertility. They generally colonize in the semen irrespective of 
their origin of infection (either in the main genital tract or 
genitourinary tract of the male). Bacterial agents such as genital 
mycoplasmas (Ureaplasma urealyticum and Mycoplasma 
hominis) generally invade the genital tracts.205 These 
microorganisms cause Urethritis, prostatitis and few instances of 
orchitis. Ureaplasmas are also reported to cause non chlamydial, 
non-gonococcal urethritis in males.206 Elevated concentrations of 
elastase in granulocyte of the seminal plasma are also indicators 
of male genital tract infections. According to WHO guideline 
around 20-30% infertile men have asymptomatic genital 
inflammations.207,208 Changes in sperm characteristics and 
apoptotic markers, semen contamination by excess leukocytes 
due to inflammation in the male genial tract, generation of 
reactive oxygen species (ROS) due to infection are considered to 
be the possible factors that contribute for the infertility among the 
male population. 

Infections caused by Mycoplasmas (M. genitalium and M. 
hominis) reduce sperm motility and morphology and can induce 
sperm DNA damage due to high ROS production induced by 
inflammation.209 Ureaplasma urealyticum and Ureaplasma 
parvum are found in the urethra and bind directly to sperm 
following ejaculation.210,211 This is thought to cause increased 
DNA damage and loss of membrane integrity through ROS 
formation. E. coli reduces sperm motility and vitality and 
increases DNA damage.212 Leukocytes are recruited in E. coli 

infection and thus neutrophils produce RO.212 Proinflammatory 
cytokines, such as IL‐6, can break cell membranes directly, 

decreasing sperm motility.213 Similarly, the E. coli reduces sperm 
membrane integrity by directly binding to their membrane and 
adding porins to the membrane of the spermatozoa.214 This causes 
a significant reduction in viability. In case of symptomatic HIV 
infections monocytes, macrophages, and leucocytes are recruited 
in semen.215 Both hepatitis B and hepatitis C viruses have been 
shown to cause male infertility. Hepatitis B virus move through 
the blood–testis barrier and transmit its genome directly into 
spermatozoa leading to defective spermiogenesis and lower 
fertilization levels.216 In men with chronic hepatitis B, high 
concentrations of IL‐18 are found in the seminal plasma which 

causes natural killer cells to secrete proinflammatory cytokine 
INF‐ ɣ217. Unlike hepatitis B, the hepatitis C virus, does not pass 
through the blood–testis barrier and does cause direct oxidative 
stress to spermatozoa.215  A systemic elevation of TNF‐α and 

NO are observed in infections with chronic hepatitis C218 and the 
consequences are chronic inflammation, and activation of 
lymphocyte and polymorphonuclear leucocyte take place.219 
Polymorphonuclear leucocytes generate ROS via NOX2, 
resulting in a loss of the mitochondrial membrane potential in the 
spermatozoa. This causes further propagation of ROS and OS. 
Hepatitis C‐induced OS causes reduction in sperm motility 

(without affecting the ejaculatory volume), apoptosis and 
enhanced DNA damage.218,219 

Disruption in either the HPG axis, spermatogenesis or 
transport of sperm in the tract are observed in Sexually 
transmitted diseases (STD). A high titer of seropositive 
chlamydia antibodies is observed in STD and this is a marker of 
severe infections finally leading to male infertility.220 

In case of acute and chronic bacterial prostatitis, pathogens 
can influence sperm directly or indirectly through the activation 
of cytokines such as IL‐6, IL‐ 8 or TNF‐ α in the seminal tract. 
Oxidative stress is produced due to elevated levels of cytokine 
and this causes a reduction in the testosterone level affecting the 
spermatozoa86,221 In testicular infection, increased IL‐6, IL‐ 8, 

and TNF‐α levels may also impact sperm transit during 

ejaculation. The main function of BTB is to isolate sperm cells 
from all other body compartments and when a virus crosses this 
barrier, they may remain active or latent and may subsequently 
be transported by the male reproductive system, especially in 
semen.222 Leukocytes found in the semen are able to carry the 
virus, contributing to the infection of all other cells in semen. This 
suggests that the blood-testis barrier cannot protect semen or 
spermatozoa completely, because when the spermatozoa leave 
the seminiferous tubules, they are exposed to an infection prone 
environment by many viruses that may cause infection in the 
male reproductive system. 

Obesity and male infertility 
Several studies have investigated the impact of obesity on the 

semen parameters. The sedentary lifestyle and fat rich diet 
disrupts male reproductive functions by reducing semen quality 
as well as by altering the physical and molecular structure of 
germ cells. Obese men are reported to have reduced sperm 
concentration, abnormal sperm morphology, altered sperm 
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motility and compromised sperm chromatin condensation and the 
reason behind it may be long exposure of germ cells to high 
aromatase activity. The size of the adipocytes also affects 
testosterone concentrations.223 Furthermore, sperm DNA 
fragmentation in obese males, indicates poor quality of 
spermatogenesis. 

The main contributors to male reproductive problems in obese 
men include endocrine and inflammatory factors224,225 Obesity is 
reported to induce systemic inflammation by activating a TH-1 
lymphocyte-dependent chronic inflammatory process.224 The 
inflammatory progression gradually affects the functions of the 
testes, epididymis, and male accessory glands.226 The 
proinflammatory mediators, interact with the control units of the 
HPG axis, thereby affecting the functioning of the testes127. 
Hypogonadotropic hypogonadism and deteriorated semen 
parameters are associated with impaired steroidogenesis and 
spermatogenesis, in addition, excessive reactive oxygen species 
(ROS) may generate and promote testicular Oxidative Stress 
(OS) causing both hormonal imbalance and direct damage to 
sperm, including sperm membrane damage, mitochondrial and 
nuclear DNA fragmentation and adverse epigenetic changes in 
the sperm DNA.90,194 Several studies have revealed that obesity 
is positively correlated with high testicular oxidative stress.221 
This causes DNA damage, deformity and damaged plasma 
membrane integrity in sperm.227,228 

Chronic inflammatory conditions are reported to be associated 
with obesity and Metabolic syndrome (MetS) which lead to 
increased expression of inflammatory cytokines among both 
testis and other accessory male sex organs including the 
ejaculate.45 It is reported that, C-reactive protein (CRP) may be 
considered as probable key marker for reproductive tract 
inflammation caused by obesity and MetS. Obesity reduces the 
adherence between Sertoli cells and spermatogenic cells, and also 
reduces the expression of proteins forming tight junctions 
causing disputed blood-testis barrier among the obese patients.229 

An altered reproductive hormonal profile is observed in obese 
males. Both Obesity and MetS reduce the testosterone and 
progesterone level in male, probably by modifying the 
steroidogenic pathway.230 Increased conversion of testosterone 
into estrogens causes elevated estrogen concentrations associated 
with high bioavailability of aromatase.231,232 High estrogen 
concentrations and low testosterone concentration in obese men 
is a potential reason for male infertility. A scientific research has 
revealed that weight reduction leads to an increase in testosterone 
concentrations, SHBG, anti- Müllerian hormone (AMH) and free 
androgen index (FAI). Obesity is also known to affect the 
spermatozoa DNA methylation.16 

Ageing and male infertility 
Ageing and inflammation are two closely linked processes and 

ageing in the male reproductive system includes changes in 
testicular function, spermatogenesis and erectile function.233 An 
imbalance between the pro and anti-inflammatory cytokines is 
evident in aged men. Histomorphological studies have revealed 
that the number of germ cells and Sertoli cells in the testes 
decrease with ageing. During the course of ageing, the 
seminiferous tubules are narrowed due to the thickening of the 

tunica propria of the basal membrane of seminiferous tubuli as 
well as simultaneous reduction of the seminiferous epithelium. 
This causes the testis to vascularize,234 which results in Testicular 
fibrosis and germinal epithelium separates from the blood supply. 
This condition of the testis also leads to testicular atrophy.235 
Leydig cells decrease in number with age showing higher 
incidence of apoptosis.236 In aged men, increased levels of the 
circulating proinflammatory cytokines IL-1β, IL-6 and TNFα 
have been reported 237,238 and concentrations of pro-inflammatory 
cytokines, such as TNF-α, IFN-α, IL-6, IL-12, IL-17 and IL-23, 
were observed to increase in orchitis16. Hyperactivation of the 
macrophages during ageing upregulates COX2 expression 
associated with an increased production of prostaglandins (well-
known mediators of inflammation.239 

Reduction in number of seminiferous tubules, on ageing leads 
to reduced number of sertoli cells and germ cells in the testis 
reflecting its adverse effect on spermatogenesis. High levels of 
the proinflammatory cytokines TNFα, IL -1α and IL--1ß during 
ageing are very harmful to sperm production4. Immuno-
histochemical studies revealed that COX2 production is linked 
with abnormal spermatogenesis.240 Furthermore, elevated ROS 
level have been described in infertile men with impaired 
spermatogenesis.241 

Ageing changes various semen parameters like daily sperm 
production, total sperm count, and sperm viability.235,89 
Functional decline of accessory glands shows gradual decrease in 
the semen volume in men with age of 45 or above. Ageing also 
affects sperm morphology242 Due to insufficient number of 
seminal vesicles, semen volume and seminal fructose 
concentration have been reported to decrease with age.243 As the 
swimming ability of spermatozoa is acquired during epididymal 
transit and motility is dependent on dilution into seminal plasma, 
altered functions of prostate gland and the epididymis leads to 
decreased sperm motility.244 High levels of certain cytokines in 
semen are often linked with a decrease in the quality of the semen 
parameters.4 

Ageing in men is known to cause prominent changes in 
steroidogenesis. Due to decrease in Leydig cell number on 
ageing, serum testosterone levels are also known to decline 
consequently. IL-1β, TNFα and prostaglandins are reported to be 
responsible for the decline of testosterone biosynthesis due to 
ageing. TNF-α acts through the activation of nuclear factor kappa 
B (NFkB), which, in turn, inhibits the transactivation of orphan 
nuclear receptors, responsible for the regulation of 
steroidogenesis108. TNF- α activates DAX-1 a member of the 
nuclear receptor family, which acts as a corepressor of many 
nuclear receptors and a regulator of steroidogenic genes.245 

Changes in the hypothalamic-pituitary axis also have an effect 
on reproductive ageing in men. Ageing causes a reduction in the 
secretion of GnRH, which in turn leads to smaller LH and 
testosterone pulses. 

One of the most common age-related disease is benign 
prostatic hyperplasia (BPH) where the prostate gland is reported 
to enlarge in older men. Age related prostate enlargement is 
known to be caused by hyperplasia of basal cells and stromal 
cells, located in the transitional zone around the urethra. Some 
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inflammatory mediators including chemokines like (CXCL1, 
CXCL2, CXCL5, CXCL6, CXCL12) and interleukins (IL-11, 
IL-33) are expressed and upregulated246 and these promote 
proliferation of both epithelial and fibroblastic/myofibroblastic 
cell types in elderly men with BPH.  In this condition, COX2 
enzyme (key enzyme for prostaglandin biosynthesis) is 
overexpressed which may even lead to prostratic cancer in aged 
men.247,248 IL-6 is also reported to have significant role in prostate 
cancer249. Infections of the ejaculatory duct can promote 
inflammation leading to a blockage and azoospermia. In older 
men, ejaculatory ducts are mainly blocked by both chronic 
prostatitis and BPH.250 Thus, ageing and inflammation have 
significant contribution in extra-testicular ducts and accessory 
sex organs, affecting male reproductive function. 

CONCLUSION 
Male infertility is accompanied by many different 

inflammatory /infectious processes. Each one has a unique 
damage mechanism and special susceptibility to antibiotics.  
Oxidative stress may serve as a common pathway by which 
several factors can cause male infertility. Inflammatory reactions 
within the male genital tract have a negative impact on sperm 
quality and consequently, infertility. Furthermore, the process of 
inflammation generates ROS in addition to inherent oxidative 
stress generated by sperm cells. This causes toxic effects on 
human spermatozoa. Among the main sources of seminal ROS, 
leukocytes are depicted as significant contributors in male 
infertility. Leucocytospermia is reportedly associated with 
impairments in sperm maturation and functions but the exact 
functions of leukocytes in seminal plasma is yet to be defined. 
An imbalance between pro-oxidative and antioxidative 
substances in semen leads to metabolic and functional disorders 
of the male germ cells and may be a primary cause of some types 
of infertility. 

The male reproductive system possesses a special immune 
microenvironment to protect the organism from the sperm’s 
antigens and prevent microbial infection. Due to its remarkable 
immunoprivileged status and effective local innate immunity the 
testis exhibits special defense mechanism.  Infection and 
inflammation in the male reproductive system are two major 
etiological factors for male infertility. The innate immune 
responses in the male genital tracts are involved in the regulation 
of immune environment and their pathophysiology. 

Although the testis is regarded as an immunologically 
privileged organ and resistant to inflammatory responses, it is 
also highly susceptible to infection as well as autoimmune 
inflammation. It is evident that disruption of the testicular 
immunological environment may lead to various reproductive 
malfunctions due to invasion of pathogens including chronic 
orchitis. Proper understanding of the mechanisms underlying 
testicular immune homeostasis has important implications for 
studying male immunological infertility or subfertility. The 
causes of immune infertility can be elucidated   by understanding 
of the molecular composition of the sperm‐ plasma membrane, 
structural domains and mechanisms that lead to a successful 
pregnancy. The immuneregulatory mechanism of various 

biomolecules depends on the balance between physiological and 
pathological conditions modulated by tolerogenic and pathogenic 
cells of the reproductive immune system. The innate defense 
functions of germ cells deserve great attention because of the 
large number of unique cells within the testis. The function of 
PRRs and their role in maintaining immune homeostasis are 
relevant areas for future research. In PRR initiated testicular 
innate immunity, very little is known about the functions of 
inflammasomes and cytosolic DNA sensors, and thus need 
further research. Defense against microbial pathogens is critical 
for hosts to recover from infection but the inflammatory response 
of the cytokines may cause damage to the host. The detrimental 
effects of inflammatory cytokines that are secreted by the 
testicular cells need to be clarified.  

Besides, the increasing global prevalence of obesity together 
with the concurrent decline in male fertility also makes 
researchers curious about finding any association between these 
two factors. Obese men have high adipose tissue deposition, 
which is considered as toxin depots and sources of several 
hormones and adipokines. These hormones may influence the 
HPG regulatory axis as well as directly testicular cells to impair 
male reproductive functions. It is evident that obese men are 
likely to have elevated levels of inflammatory markers in their 
seminal plasma which positively correlate with deteriorated 
sperm quality. 

The effects of ageing on men’s fertility are of scientific interest 
since long and age-related alterations lead to gradual changes in 
men’s androgen levels as well as spermatogenesis. These 
progressive changes consequently result in decline in both quality 
and quantity of spermatozoa. Ageing and age-related 
reproductive decline in males are closely associated with an 
imbalance between ROS production and the scavenging 
mechanism of the antioxidants present in the seminal plasma. 
Various factors like lifestyle, genetic and environmental factors 
are known to modulate this balance.  

Considering treatment, further research in this field is required 
for understanding mechanisms underlying infectious and 
inflammatory male infertility or subfertility, which can be helpful 
in the development of preventive and therapeutic approaches for 
the inflammation in the reproductive system. 
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