Cover Image

Recent advances in β-lactam chemistry

Rajneesh Kaur, Divya Tripathi, Kuldeep Singh, Raman Singh


Beta-lactams are one of the essential heterocycles which have saved humans from deadly infections. Over the years many methods have been developed. This review classifies various methods based on reagents and reactions. It has been concluded that Ketene−Imine Staudinger Reaction is the method of choice.


Beta-lactam, Antibacterial, azomethine linkage, antibacterial activity, antibacterial resistance


M. Szostak, J. Aube. Chemistry of Bridged Lactams and Related Heterocycles. Chem. Rev. 2013, 113 (8), 5701–5765.

V. Milata, R.M. Claramunt, J. Elguero, P. Zalupsky. Chemical Structure and Antibacterial Activity of 4-Quinolones: Incidence In Nature, Preparations and Properties. In Targets in Heterocyclic Systems - Chemistry and Properties; Attanasi, O. A., Spinelli, D., Eds.; Italian Chemical Society, Rome, Italy, 2000; p 167.

M.R. Grimmet. Halogenation of heterocycles: III. Heterocycles fused to other aromatic or heteraoaromatic rings. Adv. Heterocycl. Chem. 1994, 59, 245–340.

A. Dasgupta, S.G. Dastidar, Y. Shirataki, N. Motohashi. Antibacterial Activity of Artificial Phenothiazines and Isoflavones from Plants. Top. Heterocycl. Chem. 2008, 15, 67–132.

S. Radl, D. Bouzard. Recent advances in the synthesis of antibacterial quinolines. Heterocycles 1992, 34, 2143.

M. Hilmy Elnagdi, N.A. Al-Awadi, I. Abdelshafy Abdelhamid. Chapter 1 Recent Developments in Pyridazine and Condensed Pyridazine Synthesis. Adv. Heterocycl. Chem. 2009, 97, 1–43.

C. Lamberth. Bioactive Heterocyclic Compound Classes Handbook of Pharmaceutical Natural Products Antibacterial Agents Green Chemistry in the Pharmaceutical Industry Asymmetric Synthesis of Nitrogen Heterocycles Heterocycles in Natural Product Synthesis.

J. Gatenyo, K. Johnson, A. Rajapakse, K.S. Gates, S. Rozen. Transferring oxygen isotopes to 1,2,4-benzotriazine 1-oxides forming the corresponding 1,4-dioxides by using the HOF·CH 3CN complex. Tetrahedron 2012, 68 (43), 8942–8944.

A.S. Pym, S.T. Cole. Drug resistance and tuberculosis chemotherapy-from concept to genomics. Bact. Resist. to Antimicrob. 2002, 355–403.

I. Dinçer, A. Ergin, T. Kocagöz. The vitro efficacy of β-lactam and β-lactamase inhibitors against multidrug resistant clinical strains of Mycobacterium tuberculosis. Int. J. Antimicrob. Agents 2004, 23 (4), 408–411.

J.C. Palomino, D.F. Ramos, P.A. da Silva. New Anti-Tuberculosis Drugs: Strategies, Sources and New Molecules. Curr. Med. Chem. 2009, 16 (15), 1898–1904.

S. Arulmurugan, H.P. Kavitha, S. Sathishkumar, R. Arulmozhi. Biologically active benzimidazole derivatives. Mini. Rev. Org. Chem. 2015, 12 (2), 178–195.

D. Mandala, W.A. Thompson, P. Watts. Synthesis routes to anti-HIV drugs. Tetrahedron 2016, 72 (24), 3389–3420.

S. Saha, D.S.Z. Chan, C.Y. Lee, et al. Pyrrolidinediones reduce the toxicity of thiazolidinediones and modify their anti-diabetic and anti-cancer properties. Eur. J. Pharmacol. 2012, 697 (1–3), 13–23.

N. Tanwer, R. Kaur, D. Rana, et al. Synthesis and characterization of Pyrazoline derivatives. J. Integr. Sci. Technol. 2015, 3 (2), 39–41.

R. Kaur, R. Singh, K. Singh. 1,5-Benzothiazepine: Bioactivity and targets. Chem. Biol. Lett. 2016, 3 (1), 18–31.

M. Ishihara, H. Sakagami, M. Kawase, N. Motohashi. Quantitative Structure-Cytotoxicity Relationship of Bioactive Heterocycles by the Semi-empirical Molecular Orbital Method with the Concept of Absolute Hardness. Top. Heterocycl. Chem. 2009, 16, 93–133.

K.C. Majumdar, P.K. Basu, P.P. Mukhopadhyay. Formation of five- and six-membered heterocyclic rings under radical cyclization conditions. Tetrahedron 2005, 60 (45), 6239–6278.

G. Heinisch, B. Matuszczak. Six-Membered Ring Systems. Part 2: Diazines and benzo derivatives. In Progress in Heterocyclic Chemistry; Suschitzky, H., Scriven, E. F. V, Eds.; Pergamon Press, Oxford, U.K., 1994; Vol. 6.

S.W. Schneller. Triazoles and Tetrazoles with Fused Six-membered Rings. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon Press, Oxford, 1984; Vol. 5, p 847.

G. Varvounis, N. Karousis. 6.08 – Functions Containing Two Halogens and Two Other Heteroatom Substituents. In Comprehensive Organic Functional Group Transformations II; Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.; Elsevier Science, Oxford, U.K., 2005; Vol. 6, pp 271–294.

A.T. Balaban. Aromaticity of Six-Membered Rings with One Heteroatom. Top. Heterocycl. Chem. 2009, 19, 204–246.

C.J. Moody. Polyoxa, Polythia and Polyaza Six-membered Ring Systems. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon Press, Oxford, 1984; Vol. 3, p 1039.

U. Urleb. Annulated 1,3- and 1,4-Diazines: Quinoxalines. In Houben-Weyl Methods of Organic Chemistry, Hetarenes IV, Six-Membered and Larger Hetero-Rings with Maximum Unsaturation; Schaumann, E., Ed.; Houben-Weyl; Georg Thieme Verlag, Stuttgart, 1997; Vol. E9b / Part, pp 193–265.

B. Stanovnik. Monocyclic (or Annulated) 6-Ring System with Two N-Atoms, 1,2-Diazines and Annulated Derivatives, Cinnolines. In Houben-Weyl Methods of Organic Chemistry, Hetarenes IV, Six-Membered and Larger Hetero-Rings with Maximum Unsaturation; Schaumann, E., Ed.; Houben-Weyl; Georg Thieme Verlag, Stuttgart, 1997; Vol. E9a, pp 683–743.

K. Burger, U.W.E. Wucherpfennig, O.I.D.T. Universitat. Fluoro Heterocycles with Five- Membered Rings. Adv. Heterocycl. Chem. 1994, 60, 2–65.

Z. Ke, G. Chit Tsui, X.S. Peng, Y.Y. Yeung. Five-Membered Ring Systems: Furans and Benzofurans. In Progress in Heterocyclic Chemistry; Gribble, G. W., Joule, J., Eds.; Elsevier, Oxford, U. K., 2017; Vol. 29, pp 483–518.

Y.-J. Wu, B. V Yang. Five-Membered Ring Systems: With N and S (Se) Atoms. Prog. Heterocycl. Chem. 2014, 26, 279–301.

Y.-J. Wu, B. V. Yang. Five-Membered Ring Systems: With N and S (Se) Atoms. Prog. Heterocycl. Chem. 2013, 25, 257–275.

T. Janosik, J. Bergman. Five-membered ring systems: thiophenes and Se/Te analogs. In Progress in Heterocyclic Chemistry; Elsevier, Oxford, U. K., 2009; Vol. 20, pp 94–121.

K. Banert. Synthesis of five-membered heterocycles from novel functionalized allenes. In Targets in Heterocyclic Systems - Chemistry and Properties; Attanasi, O. A., Spinelli, D., Eds.; Italian Chemical Society, Rome, Italy, 1999; Vol. 3, pp 1–32.

I. Hachiya, I. Mizota, M. Shimizu. Synthesis of Nitrogen-Containing Heterocycles using Conjugate Addition Reactions of Nucleophiles to alpha,beta-Unsaturated Imines. Heterocycles 2012, 85 (5), 993–1016.

B.S. Jursic. Cycloaddition reactions involving heterocyclic compounds as synthons in the preparation of valuable organic compounds. An effective combination of a computational study and synthetic applications of heterocycle transformations. In Theoretical and Computational Chemistry; Parkanyi, C., Ed.; Theoretical and Computational Chemistry; Elsevier Science Publ B V, Sara Burgerhartstraat 25/PO Box 211/1000 AE Amsterdam/Netherlands, 1998; Vol. 5, pp 501–579.

L. Nicolas, A.N. Butkevich, A. Guerinot, et al. Synthesis of Complex Oxygenated Heterocycles. Pure Appl. Chem. 2013, 85 (6), 1203–1213.

A. Sharma, P. Appukkuttan, E. Van der Eycken. Microwave-assisted synthesis of medium-sized heterocycles. Chem. Commun. 2012, 48 (11), 1623–1637.

N. Arya, A.Y. Jagdale, T.A. Patil, et al. The chemistry and biological potential of azetidin-2-ones. Eur. J. Med. Chem. 2014, 74, 619–656.

H. Staudinger. Zur Kenntniss der Ketene. Diphenylketen. Justus Liebig’s Ann. der Chemie 1907, 356 (1–2), 51–123.

D.R. Wagle, C. Garai, J. Chiang, et al. Studies on lactams. 81. Enantiospecific synthesis and absolute configuration of substituted .beta.-lactams from D-glyceraldehyde acetonide. J. Org. Chem. 1988, 53 (18), 4227–4236.

D.A. Evans, J.M. Williams. The asymmetric synthesis of β-lactam antibiotics-v. Application of chiral α,β-epoxyimines in ketene-imine cycloaddition reactions leading to homochiral 3-aminoazetidinones. Tetrahedron Lett. 1988, 29 (40), 5065–5068.

T. Kawabata, Y. Kimura, Y. Ito, et al. A novel and efficient synthesis of the key intermediate of 1β-methylcarbapenem antibiotics employing [ 2+2 ]-cycloaddition reaction of diketene with a chiral imine. Tetrahedron 1988, 44 (8), 2149–2165.

D.R. Wagle, C. Garai, M.G. Monteleone, A.K. Bose. Antipodal forms of β-lactams via stereospecific reactions. Tetrahedron Lett. 1988, 29 (14), 1649–1652.

Y.G. Gololobov, L.F. Kasukhin. Recent advances in the Staudinger reaction. Tetrahedron 1992, 48, 1353.

M.I.K. a. B.J. Plotkin. Asymmetric Synthesis of beta-Lactams via the Staudinger Reaction. In Amino Acids, Peptides and Proteins in Organic Chemistry. Vol. 4 - Protection Reactions, Medicinal Chemistry, Combinatorial Synthesis; Hughes, A. B., Ed.; Wiley-VCH, Weinheim, 2011; Vol. 4, pp 293–320.

T.T. Tidwell. Hugo (Ugo) Schiff, Schiff Bases, and a Century of β-Lactam Synthesis. Angew. Chemie Int. Ed. 2008, 47 (6), 1016–1020.

C. Rochais, S. Rault, P. Dallemagne. Intramolecular Cyclisation of β-Aryl-β-Amino Acids in the Design of Novel Heterocyclic Systems with Therapeutic Interest: An Unfailing Source of Diversity. Curr. Med. Chem. 2010, 17 (35), 4342–4369.

T. Kunieda, T. Nagamatsu, T. Higuchi, M. Hirobe. Highly efficient oxazolone-derived reagents for beta-lactam formation from beta-amino acids. Tetrahedron Lett. 1988, 29 (18), 2203–2205.

J.C. Sheehan, A.K. Bose. The Synthesis and Reactions of Some Substituted β-Lactams. J. Am. Chem. Soc. 1951, 73 (4), 1761–1765.

B.G. Chatterjee, V.V. Rao, B.N.G. Mazumdar. Synthesis of Substituted β- and γ-Lactams. J. Org. Chem. 1965, 30 (12), 4101–4104.

A.K. Bose, M.S. Manhas, R.M. Ramer. Studies on lactams—IV. Tetrahedron 1965, 21 (2), 449–455.

N. Miyachi, F. Kanda, M. Shibasaki. Use of copper(I) trifluoromethanesulfonate in .beta.-lactam synthesis. J. Org. Chem. 1989, 54 (15), 3511–3513.

M.J. Miller, P.G. Mattingly, M.A. Morrison, J.F. Kerwin. Synthesis of .beta.-lactams from substituted hydroxamic acids. J. Am. Chem. Soc. 1980, 102 (23), 7026–7032.

H.H. Wasserman, D.J. Hlasta, A.W. Tremper, J.S. Wu. The synthesis of β-lactams by the cyclization of β-halopropionamides. Tetrahedron Lett. 1979, 20 (6), 549–552.

J. Singh Sandhu, B. Sain. Some Recent Advances in the Chemistry of Imines, in Particular Cycloaddition Reactions. Heterocycles 1987, 26 (3), 777.

B. R. Pai, T. R. Govindachari, P. Chinnasamy, et al. Some Recent Work on Schiff Bases, Imines and Iminium Salts in Synthetic Heterocyclic Chemistry — a Review. Heterocycles 1984, 22 (3), 585.

N.S. Isaacs. Synthetic routes to β-lactams. Chem. Soc. Rev. 1976, 5, 181–202.

A.K. Halve, R. Dubey, D. Bhadauria, B. Bhaskar, R. Bhadauria. Synthesis, antimicrobial screening and structure-activity relationship of some novel 2-hydroxy-5-(nitro-substituted phenylazo) benzylidine anilines. Indian J. Pharm. Sci. 2006, 68 (August), 510–514.

A.K. Halve, B. Bhashkar, V. Sharma, et al. Synthesis and in vitro antimicrobial studies of some new 3-[phenyldiazenyl] benzaldehyde N -phenyl thiosemicarbazones. J. Enzyme Inhib. Med. Chem. 2008, 23 (1), 77–81.

A.K. Halve, B. Bhaskar, V. Sharma, D. Bhadauria, R. Bhadauria. Facile synthesis and antimicrobial screening of some biorelevant thiosemicarbazone and its analogues. J. Indian Chem. Soc. 2007, 84 (10), 1032–1034.

A.K. Halve, D. Bhadauria, B. Bhaskar, R. Dubey, R. Bhadauria. Design, synthesis and in vitro antibacterial studies of some biologically significant N-3-chloro-4-[2′-hydroxy-5′-(phenylazo)phenyl]azetidin- 2-ones. J. Indian Chem. Soc. 2007, 84 (2), 193–196.

F.H. van der Steen, H. Kleijn, J.T.B.H. Jastrzebski, G. van Koten. The syntheses of β-lactams from zinc enolates of N,N-disubstituted α-aminoacid esters and imines: Substituent and solvent effects. Tetrahedron Lett. 1989, 30 (6), 765–768.

F.H. van der Steen, J.T.B.. Jastrzebski, G. van Koten. Stereoselective one-pot syntheses of trans-3-amino-β-lactams from zinc enolates of N-protected α-aminoacid esters and imines. Tetrahedron Lett. 1988, 29 (20), 2467–2470.

G. Rajendra, M.J. Miller. γ-substituent effects on the oxidative cyclization of o-acyl β,γ-unsaturated hydroxamates. Tetrahedron Lett. 1987, 28 (50), 6257–6260.

J.K. Rasmussen, A. Hassner. Recent developments in the synthetic uses of chlorosulfonyl isocyanate. Chem. Rev. 1976, 76 (3), 389–408.

H. Alper, F. Urso, D.J.H. Smith. Regiospecific metal-catalyzed ring expansion of aziridines to .beta.-lactams. J. Am. Chem. Soc. 1983, 105 (22), 6737–6738.

H. Alper. The Cleavage of Three-Membered Ring Compounds by Transition Metal Organometallic Complexes. Isr. J. Chem. 1981, 21 (2–3), 203–209.

J.L. Davidson, P.N. Preston. Use of Transition Organometallic Compounds in Heterocyclic Synthesis. Adv. Heterocycl. Chem. 1982, 30 (C), 319–402.

S. Calet, F. Urso, H. Alper. Enantiospecific and stereospecific rhodium(I)-catalyzed carbonylation and ring expansion of aziridines. Asymmetric synthesis of .beta.-lactams and the kinetic resolution of aziridines. J. Am. Chem. Soc. 1989, 111 (3), 931–934.

R.R. Rando. Conformational and solvent effects on carbene reactions. J. Am. Chem. Soc. 1970, 92 (22), 6706–6707.

R.R. Rando. Conformational and medium effects on intramolecular carbene reactions. J. Am. Chem. Soc. 1972, 94 (5), 1629–1631.

E.J. Moriconi, P.H. Mazzocchi. Synthesis of cis- and trans-7-Azabicyclo[4.2.0]octanes 1-3. J. Org. Chem. 1966, 31 (5), 1372–1379.


  • There are currently no refbacks.