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INTRODUCTION 
Throughout this paper, the set of Bicomplex numbers is 

denoted by 2C and the sets of complex and real numbers are 

denoted by 1C  and 0C , respectively. For details of the theory 
of bicomplex numbers.1-3 

The set of Bicomplex Numbers defined as: 

}ii=ii,1-=i=iandi≠i

,C∈x,x,x,x:xii+xi+xi+x{=C
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We shall use the notations )i(C 1  and )i(C 2  for the 
following sets: 

}Cv,u:viu{)i(C 011 
}C,:i{)i(C 022    

1.1 IDEMPOTENT ELEMENTS:  
Besides 0 and 1, there are exactly two non – trivial 

idempotent elements in 2C , denoted as 1e  and 2e  and 

defined as 
2

ii1e 21
1


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2
ii1e 21

2
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 Note that 1ee 21   and .0eeee 1221   
1.2 CARTESIAN IDEMPOTENT SET: 

Cartesian idempotent set X determined by 1X and 2X   is 

denoted as 2e1 XX   and is defined as 
X=
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1.3 IDEMPOTENT REPRESENTATION OF BICOMPLEX NUMBERS 

(I) )i(C 1 -idempotent representation of Bicomplex Number 
is given by 

2
2

1
1
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e+e=

e)zi+z(+e)zi-z(=zi+z=




 

In this work, we have introduced and studied the Bicomplex version of Complex Dirichlet Series 





1n

sn
nea)s(f  . We 

have derived condition for which the sum function of the Bicomplex Dirichlet Series 





1n

n
n e)(f  represents an 

entire function. The Entireness of sum and Hadamard product of two Entire Bicomplex Dirichlet Series are also discussed.. 
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(II) )i(C 2 -idempotent representation of Bicomplex 
Number is given by 

221122211221

2114221321

e+e=e)wi+w(+e)wi-w(=

wi+w=)xi+x(i+)xi+x(=




 

 
Note 1.1: Out of the two idempotent representation, we use 

)i(C 1 -idempotent representation. All the results also proved 

with the help of )i(C 2 -idempotent representation technique.  

The norm in 2C  is defined as 

  212
2

2
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2C  becomes a modified Banach algebra, in the sense that

 2.                   … (1.1) 
 
         

1.4 COMPLEX DIRICHLET SERIES:4-6 
A Dirichlet series is a series of the form 

sn

1n
n ea)s(f 




  where }{λ n  is a strictly monotonically 

increasing and unbounded sequence of positive real numbers, 
and tis   is a complex variable.  

When the sequence }{λ n  of exponent is to be emphasized, 

such a series is called a complex Dirichlet series of type nλ .4 

A Dirichlet series of the type n is a power series in se  is 

given by ns

1n
n

sn

1n
n )e(aea)s(f 









   

A Dirichlet series of type nlog  is the Generalized 

Riemann Zeta function is given by s

1n
n na)s(f 




  

Abscissae of convergence and absolute convergence: 
To every Dirichlet series, there exists a number 0σ  such 

that the Dirichlet series sn

1n
n ea)s(f 




  converges for 

0σ(s)Re   and diverges for 0σ(s)Re  .  The number 

0σ  is called the abscissa of convergence of the series, and the 

line 0σ)sRe(   is called the line of convergence. 

To every Dirichlet series, there exists a number   such that 

the Dirichlet series sn

1n
n ea)s(f 




  is absolutely 

convergent for )sRe( , and not absolutely convergent for 

)sRe(  (this region comprise the region 0σ(s)Re   of 

divergence, the region  (s)Reσ0  of conditional 

convergence and the line 0σ(s)Re   ). 

The quantity   is called the abscissa of absolute 

convergence of the series sn

1n
n ea)s(f 




  and the line 

)sRe(  is called the line of absolute convergence. 
 

1.5 ENTIRENESS OF COMPLEX DIRICHLET SERIES: 

THEOREM 1.1:4  

For the complex Dirichlet Series s

1n
n

nea 



  

 If 
n

____ n
lim , Then 

n

n____

0 λ
alog

limσσ  . 

Corollary 1.1: For a Dirichlet Series sn

1n
n ea)s(f 




  

n
alog

limσσ n
0   

Proof: nn  


 1
n
nlimnlim

n
 

Hence, 
n
alog

limσσ n
0   

Corollary 1.2: The Complex Dirichlet Series

sn

1n
n ea)s(f 




  represents an Entire function iff   

                       0a n
1

n   as n . 

Proof :  

For entireness of sn

1n
n ea)s(f 




   
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n
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n
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1
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1
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0a n
1
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Hence sn

1n
n ea)s(f 




 represents an Entire function if 

0a n
1

n   as n . 
 

2. BICOMPLEX DIRICHLET SERIES:  
In this paper we discuss a Bicomplex Dirichlet Series of type 

n, which is a Bicomplex Power Series in e  

           n

1n
n

1n

n
n )e(e)(f 










   

where }α{ n  is a sequence of bicomplex numbers and ξ  is 
a bicomplex variable. 

Note that,  

2
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n
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n
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2
22

1
11 e)(fe)(f)(f   

Where, 





1n

n
n e)(f  is a Bicomplex Dirichlet 

Series and 





1n

n
n

111 1
e)(f , 







1n

n
n

222 2
e)(f are Complex Dirichlet Series.  

Throughout, We denote the abscissae of convergence of the 

Complex Dirichlet series 





1n

n
n

1 1
e  and 






1n

n
n

2 2
e  

by 1σ  and 2σ and abscissae of their absolute convergence by 

1  and 2 , respectively. 
 

THEOREM 2.1:   

For the Bicomplex dirichlet Series 





1n

n
n e)(f     

n
log

lim n
2211


   

if , n3n2n4n1   

Proof:  

n421n32n21n1n iiii   

            2n
2

1n
1

n ee     

Where, )(i)( n3n21n4n1n
1   and 

)(i)( n3n21n4n1n
2   

2
n4

2
n3

2
n2

2
n1n

2
n

1 )()()()( 

n3n2n4n1   
Also , 

2
n4

2
n3

2
n2

2
n1n )()()()(   

Hence,  n
2

n
1

n   iff n3n2n4n1   

As, 
n

log
lim

n
1

11


  and 

n

log
lim

n
2

22


            [cf. Cor. 1.1] 

Hence, 
n

log
lim n

2211


  

THEOREM 2.2:  

The Bicomplex Dirichlet series ξn

1n
n eα 




  and the kth 

derivative defined by ξn

1n
n

k eαn)( 



    have the same 

region of convergence. 

Proof:   

n

log
lim

n
1

11


  and 

n

log
lim

n
2

22


  

Let 21,    and 21 ,  are the associated abscissae of 
convergence and absolute convergence of the Bicomplex 

Dirichlet series ξn

1n
n

k eαn)( 



  . 

The,  

 
n

nlog
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n
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n
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nloglimk
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n
1 



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n

log
lim
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1

  

1                                                                  
Similarly, 

 
n

log
lim

n

nlog
lim

n
2

n
2k

22







2 . 

THEOREM 2.3:  

The Bicomplex Dirichlet series ξn

1n
n eα 




  and the 

Bicomplex Dirichlet series ξn

1n
k

n e
n)(
α 







obtained after 

k–times term-by-term integration of ξn

1n
n eα 




  have the 

same region of convergence. 

Proof:   

n

log
lim

n
1
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
             and 

n

log
lim

n
2

22


  

Let 21,    and 21 ,  are the associated abscissae of 
convergence and absolute convergence of the Bicomplex 

Dirichlet series ξn

1n
k

n e
n)(
α 







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Then, 
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nlogimlk
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n
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1           
Similarly, 

 
n

log
lim

n
n
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n
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n
2
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





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ENTIRE BICOMPLEX DIRICHLET SERIES 

DEFINITION 2.1: 

The Bicomplex Dirichlet series    n
n ef  is 

said to be an entire Bicomplex Dirichlet Series if it is 
convergent in the entire 2C –space. 

THEOREM 2.4:  

0n
1

n   as n  if and only if 0n
1

n
1   as 

n  and 0n
1

n
2   as n , where 

2n
2

1n
1

n ee  . 

Proof:  

Let 0n
1

n   as n  

Given 0  Nm , such that  n
1

n       

mn      

Now mn  , n
n  

n
2
1

2
n

22
n

1

2
















 
 

 n22
n

22
n

1 2  n22
n

1 2 and 

n22
n

2 2  0n
1

n
1   and 0n

1

n
2     

Conversely let  0n
1

n
1   as n  and 

0n
1

n
2   as n  

 i.e. Given 0  Nm,m 21    

Such that  n
1

n
1         1mn   and  n

1

n
2        

2mn   
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Let  )m,m(maxm 21  

Then mn  ,  n
1

n
1   and    n

1

n
2  

2
1

2
n

22
n

1

n 2














 
 

2
n

22
n

12
n2  

n2n2n22
n 22   

 0n
1

n   as n                                                                    
 

THEOREM 2.5:  

The Bicomplex Dirichlet series    n
n ef  is an 

entire Bicomplex Dirichlet series if and only if both 

   
1n

n
111 ef  and    

2n
n

222 ef  

are entire Complex Dirichlet series. 
 
Corollary 2.1: The Bicomplex Dirichlet series 

   n
n ef  is an entire Bicomplex Dirichlet series 

if and only if 1  and 2 . 
 
Corollary 2.2: The Bicomplex Dirichlet series 

   n
n ef  is an entire Bicomplex Dirichlet series 

if and only if 0n
1

n
1   and 0n

1

n
2  . 

 
Corollary 2.3: The Bicomplex Dirichlet series 

   n
n ef  is an entire Bicomplex Dirichlet series 

iff 0n
1

n  . 
 

THEOREM 2.6:  

Let   ξn

1n
nn eα)(h 




   be the Hadamard product 

of ξn

1n
neα)(f 




  and ξn

1n
ne)(g 




 . If f and g are 

entire Bicomplex Dirichlet series, then h is also an entire 
Bicomplex Dirichlet series. 

Proof:  

ξn

1n
neα)(f 




  and ξn

1n
ne)(g 




   are two 

Entire Bicomplex Dirichlet Series   

  0n
1

n   as n  and 0n
1

n   as 

n  
i.e. given 0  Nm,m 21    

Such that  n
1

n       1mn    and    n
1

n       

2mn   

Let  )m,m(maxm 21  

Now mn  ,  n
1

n  and  n
1

n  

Now, nnnn 2   

  n
1

nn
1

n
n
1

n
1

nn 2  )()()2( n2
1



2n2
1

)2(   

 2n2
1

n
1

nn )2(   0n
1

nn  as  
n                                             

Hence   ξn

1n
nn eα)(h 




   is an entire Bicomplex 

Dirichlet Series. 
 

THEOREM 2.7:  

If ξn

1n
neα)(f 




  and ξn

1n
ne)(g 




   be two 

entire Bicomplex Dirichlet series, then the series 

  ξn

1n
nn eα 




   is also an entire Bicomplex Dirichlet 

series. 
 

THEOREM 2.8:  

If ξn

1n
n eα 




  is an Entire Bicomplex Dirichlet Series, 

then kth derivative defined by ξn

1n
n

k eαn)( 



    is also 

an Entire Bicomplex Dirichlet Series.  
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Proof:   

ξn

1n
n eα)(f 




  is an Entire Bicomplex Dirichlet 

Series 

i.e. 0n
1

n   as n  

Now, n
1

n
kαn)(  n

1

n
n
k

α(n)  

0αn)( n
1

n
k   as n          0)n( n

k

  as 

n    
 

THEOREM 2.9:  

If the Bicomplex Dirichlet series ξn

1n
n eα 




  is an entire 

Bicomplex Dirichlet series then the Bicomplex Dirichlet series 

ξn

1n
k

n e
n)(
α 







obtained after k–times term-by-term 

integration of ξn

1n
n eα 




  is also an entire Bicomplex 

Dirichlet series. 

Proof:  

Let ξn

1n
neα)(f 




  is an entire Bicomplex Dirichlet 
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
 is an entire Bicomplex Dirichlet 

series. 
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